Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm. Đường phân giác AD. Kẻ DE⊥AB;DF⊥AC. Qua đỉnh A của tam giác ABC kẻ đường thẳng d không song song với BC, đường thẳng này cắt DE, DF kéo dài tại M, N. Chứng minh BM // CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,a,
ta có bc^2=ab^2+ac^2=4^2+3^2=25=>bc=5 cm
b,
xét tam giác abc và tam giác adc có:
ac:cạnh chung
^b=^d
ab=ad
=>tam giác abc=tam giác adc(cgc)
=>cd=cb
xét tam giác bae và tam giác dae có:
ae:cạnh chung
^bae=^dae
da=db
=>tam giác bae=tam giác dae(cgc)
=>be=de
xét tam giác bec và tam gíac dec có
be=de(cmt)
cd=cb(cmt)
ce chung
=>tam giác bec=tam giác dec(ccc)
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:
\(MQ^2=PQ^2-MP^2\)
\(\Rightarrow MQ=10^2-6^2=100-36=64\)
\(\Rightarrow MQ=8\left(cm\right)\)
Xét ▲ABC và ▲MPQ ta có :
\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)
<A=<M=90
Do đó hai tam giác đồng dạng
- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .
\(\sin\widehat{B}=\sin60^0=\dfrac{\sqrt{3}}{2}\)
\(\cos\widehat{B}=\dfrac{1}{2}\)
\(\tan\widehat{B}=\sqrt{3}\)
\(\cot\widehat{B}=\dfrac{\sqrt{3}}{3}\)
Giải chi tết ra được không ạ ? Chứ em không hiểu lắm :((
a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xet ΔABC vuông tại A và ΔMNP vuông tại M co
AB/MN=AC/MP
=>ΔABC đồng dạng vơi ΔMNP
b: ΔABC đồng dạng vơi ΔMNP
=>goc A=góc M; góc B=góc N; gócC=góc P