Cho tam giác vuông ABC vuông tại A ; AC = 2AB. Gọi H là chân đường cao kẻ từ A của tâm giác ABC. Biết \(\overrightarrow{AH}\)= m\(\overrightarrow{AB}\)+k\(\overrightarrow{AC}\) . Giá trị của biểu thức S = 10m + 2020k bằng:
A. 1618
B. 1350
C. 680
D. 412
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Bài 1:
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)
nên \(\widehat{B}=59^0\)
hay \(\widehat{C}=31^0\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
Đặt \(AB=a\Rightarrow AC=2a\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=a\sqrt{5}\)
Áp dụng hệ thức lượng:
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{a^2}{a\sqrt{5}}=\dfrac{a\sqrt{5}}{5}=\dfrac{1}{5}.a\sqrt{5}\)
\(\Rightarrow BH=\dfrac{1}{5}BC\Rightarrow\overrightarrow{BH}=\dfrac{1}{5}\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}+\dfrac{1}{5}\overrightarrow{BC}=\overrightarrow{AB}+\dfrac{1}{5}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}-\dfrac{1}{5}\overrightarrow{AB}+\dfrac{1}{5}\overrightarrow{AC}\)
\(=\dfrac{4}{5}\overrightarrow{AB}+\dfrac{1}{5}\overrightarrow{AC}\)
\(\Rightarrow\left\{{}\begin{matrix}m=\dfrac{4}{5}\\k=\dfrac{1}{5}\end{matrix}\right.\) \(\Rightarrow S=\dfrac{10.4}{5}+\dfrac{2020.1}{5}=412\)