K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta MAB\)và \(\Delta MDC\)có:

          MA = MD (gt)

          \(\widehat{BMA}=\widehat{CMD}\)(2 góc đối đỉnh)

          MB = MC (gt)

\(\Rightarrow\Delta MAB=\Delta MDC\left(c-g-c\right)\)

\(\Rightarrow AB=DC\)(2 cạnh tương ứng)

     \(\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB//CD\)

b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:

          MA = MD (gt)

         \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh)

         MB = MC (gt)

\(\Rightarrow\Delta ACM=\Delta DBM\left(c-g-c\right)\)

\(\Rightarrow AC=DB\)(2 cạnh tương ứng)

Xét \(\Delta BAC\)và \(\Delta CDB\)có:

      AB = DC (cmt)

     AC = DB (cmt)

     BC là cạnh chung

\(\Rightarrow\Delta BAC=\Delta CDB\left(c-c-c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{CDB}\)(2 góc tương ứng)

c) Bn tự lm nhá!! Phần này mk chưa nghĩ ra. Tốn chất xám lắm!!!!!

21 tháng 1 2022

a. Xét △ABM và △DCM:

\(AM=MD\left(gt\right)\)

\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

 

b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong

\(\Rightarrow CD\text{ // }AB\left(a\right)\)

 

c. Xét △CIK và △AIB:

\(AI=IC\left(gt\right)\)

\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)

\(BI=IK\left(gt\right)\)

\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong

\(\Rightarrow AB\text{ // }CK\left(b\right)\)

Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)

Vậy: D, C, K thẳng hàng (đpcm).

21 tháng 1 2022

a) Xét tam giác ABM và tam giác DCM:

BM = CM (M là trung điểm BC).

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).

MA = MD (cmt).

\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).

b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).

Mà 2 góc này ở vị trí so le trong.

\(\Rightarrow\) CD // AB (dhnb).

c) Xét tứ giác AKCB có:

I là trung điểm AC (gt).

I là trung điểm BK (IB = IK).

\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).

\(\Rightarrow\) CK // AB (Tính chất hình bình hành).

Mà CD // AB (cmt).

\(\Rightarrow\) D, C, K thẳng hàng.

a: Xét ΔMAB và ΔMDC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: BA=DC; AC=DB

Xét ΔBAC và ΔCDB có 

BA=CD

AC=DB

BC chung

Do đó: ΔBAC=ΔCDB

c: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

Suy ra: AD và FE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AD

nên M là trung điểm của FE

hay F,M,E thẳng hàng

7 tháng 1 2022

cảm ơn

18 tháng 12 2021

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

18 tháng 12 2021

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

27 tháng 6 2019

A B C M D

a) Xét tam giác MAB và tam giác MDC có:

MA=MD (gt)

MB=MC( M là trung điểm BC)

\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh)

=> Tam giác MAB = tam giác MDC

b)

 Tam giác MAB = tam giác MDC => \(\widehat{BAM}=\widehat{CDM}\)

Mà hai góc này ở vị trí so le trong

=> AB//CD

c)  Ta có AB vuông AC

mag CD // AB

=> CD vuông AC

=> góc ACD bằng 90 độ

a: Xet ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>BD//CA

c: Xét ΔABC và ΔDCB có

AB=DC

BC chung

AC=DB

=>ΔABC=ΔDCB

d: Xét tứ giác AEDF có

AE//DF

AE=DF

=>AEDF là hình bình hành

=>AD cắt EF tại trung điểm của mỗi đường

=>E,M,F thẳng hàng