cho tam giác ABC vuông tại A và gocsC=30độ; AB=3cm từ trung điểm E vẽ đường thẳng vuông góc với AB cắt BC tại F.
a)C/m F là trung điểm của BC
b)Tứ giác AEFC là hình j? Vì sao?
c)tTinhs độ dài các cạnh của tứ giác AEFC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABM có : BA=BM
=> ΔABM cân tại B
=> \(\widehat{BAM}=\widehat{B}=30^o\)
=> \(\widehat{MAC}=90^o-30^o=60^o\)
\(\widehat{C}=90^o-\widehat{B}=60^o\)
ΔAMC có 2 góc \(60^o\)
=> ΔAMC là tam giác đều
Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}\)
=>AC/BC=1/2
hay BC=2AC
a, Ta có:
\(\widehat{ADC}=\widehat{A}-\widehat{DAB}=90^o-30^o=60^o\)
Mà \(\widehat{C}=\widehat{A}-\widehat{B}=90^o-30^o=60^o\)
Nên \(\widehat{ADC}=\widehat{C}=60^o\)
Do đó \(\Delta ADC\) là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: \(\Delta ADC\) là tam giác đều \(\Rightarrow AD=DC=AC\left(1\right)\)
Mà do AD là trung tuyến của \(\Delta ABC\) trên AC nên \(BD=CD=\dfrac{1}{2}BC\left(2\right)\)
Từ (1) và (2), suy ra: \(AC=BD=CD=\dfrac{1}{2}BC\) (đpcm)
Chúc bạn học tốt nha.