Cho p/s ; A = n+1/n-3
tìm n để A là STN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Nhóm 2 số từ trái sang phải, ta được
S=(2+22) +(2^3+2^4)+......+(2^23+2^24)
S=3+2^3(1+2)+...........+2^23(1+2)
S=3 + 2^3.3+........+2^23.3
S=3(1+2^3+.........+2^23) chia hết cho 3 vì có 3 chia hết cho 3
b
Nhóm 3 số từ trái sang phải, ta được
S=(2+22+2^3+(2^4+2^5+2^6)+...........+(2^22+2^23+2^24)
S=14+2^3(2+2^2+2^3)+...........+2^21(2+2^2+2^3)
S=14+2^3.14+....................+2^21.14
S=14.(1+2^3+..................+2^21)
Có 14 = 2.7 chia hết cho 7 => S chia hết cho 7
c
Nhóm 4 số từ trái sang phải, ta có
S=(2+2^2+2^3+2^4)+................+(2^21+2^22+2^23+2^24)
S=30+...................+2^20.30
S=30(1+...........+2^20)
Có 30=5.7=>30 chia hết cho 5=> S chia hết cho 5
Tính tổng :1+4+14+.....+404.
các bạn giải ra giúp mình nha!
a/
\(3S=3+3^2+3^3+3^4+...+3^{120}\)
\(2S=3S-S=3^{120}-1\Rightarrow S=\frac{3^{120}-1}{2}\)
b/ \(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(S=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{117}.13=13\left(1+3^3+...+3^{117}\right)\) chia hết cho 13
c/
\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(S=40+3^4.40+...+3^{116}.40=40\left(1+3^4+...+3^{116}\right)\) chia hết cho 40
a) Do 19!; 23! và 17! đều có chứa thừa số 11
=> 19! chia hết cho 11; 23! chia hết cho 11; 17! chia hết cho 11
=> S = 19! + 23! - 17! chia hết cho 11 (đpcm)
b) Do 19!; 23! và 17! đều có chứa thừa số 10
=> 19! chia hết cho 10; 23! chia hết cho 10; 17! chia hết cho 10
=> S = 19! + 23! - 17! chia hết cho 10
Kết hợp câu trên => S = 19! + 23! - 17! chia hết cho cả 11 và 10
Mà (11;10)=1 => S chia hết cho 110 (đpcm)
a) Do 19!; 23! và 17! đều có chứa thừa số 11
=> 19! chia hết cho 11; 23! chia hết cho 11; 17! chia hết cho 11
=> S = 19! + 23! - 17! chia hết cho 11 (đpcm)
b) Do 19!; 23! và 17! đều có chứa thừa số 10
=> 19! chia hết cho 10; 23! chia hết cho 10; 17! chia hết cho 10
=> S = 19! + 23! - 17! chia hết cho 10
Kết hợp câu trên => S = 19! + 23! - 17! chia hết cho cả 11 và 10
Mà (11;10)=1 => S chia hết cho 110 (đpcm)
Gọi số đã cho là \(\overline{xy}=10x+y\) (điều kiện...)
Tổng 2 chữ số bằng 11 nên: \(x+y=11\)
Tích 2 chữ số nhỏ hơn số đã cho là 30 nên \(xy=10x+y-30\)
Ta có hệ: \(\left\{{}\begin{matrix}x+y=11\\xy=10x+y-30\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=11-x\\-xy+10x+y-30=0\end{matrix}\right.\)
\(\Rightarrow-x\left(11-x\right)+10x+11-x-30=0\)
\(\Leftrightarrow x^2-2x-19=0\)
Pt trên ko có nghiệm tự nhiên nên ko tồn tại số thỏa mãn yêu cầu
Chắc bạn ghi nhầm đề
bài tập đội tuyển hay chuyên đề vậy?
\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để \(1+\frac{4}{n-3}\) là số nguyên <=> \(\frac{4}{n-3}\) là số nguyên
=> n - 3 ∈ Ư ( 4 ) = { ± 1 ; ± 2 ; ± 4 }
=> n ∈ { 4 ; 2 ; 5 ; 1 ; 7 ; - 1 }