K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

\(sin\alpha=sin\left(180-\alpha\right)=\dfrac{3}{5}\Rightarrow cos\left(180-a\right)=\sqrt{1-sin^2\alpha}=\dfrac{4}{5}\Rightarrow cos\alpha=-\dfrac{4}{5}\)

\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{3}{5}}{-\dfrac{4}{5}}=-\dfrac{3}{4}\Rightarrow cot\alpha=-\dfrac{4}{3}\)

\(\Rightarrow A=\dfrac{3.\dfrac{3}{5}-\dfrac{4}{5}}{-\dfrac{3}{4}+\dfrac{4}{3}}=\dfrac{12}{7}\)

NV
28 tháng 4 2021

\(P=\dfrac{\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}{\dfrac{sina}{cosa}-\dfrac{3cosa}{sina}}=\dfrac{sin^2a+cos^2a}{sin^2a-3cos^2a}=\dfrac{1}{sin^2a-3\left(1-sin^2a\right)}=\dfrac{1}{4sin^2a-3}=\dfrac{1}{4.\left(\dfrac{1}{3}\right)^2-3}=...\)

NV
23 tháng 10 2021

\(A=\dfrac{\dfrac{sina}{cosa}+\dfrac{cosa}{cosa}}{\dfrac{sina}{cosa}-\dfrac{cosa}{cosa}}=\dfrac{tana+1}{tana-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=2+\sqrt{3}\)

21 tháng 10 2021

a: \(\cos\alpha=\dfrac{1}{2}\)

\(\tan\alpha=\sqrt{3}\)

\(\cot\alpha=\dfrac{\sqrt{3}}{3}\)

Bài 1: 

\(\cos\alpha=\sqrt{1-\dfrac{9}{25}}=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)

Bài 2: 

\(\sin\alpha=\sqrt{1-\dfrac{49}{100}}=\dfrac{\sqrt{51}}{10}\)

\(\tan\alpha=\dfrac{\sqrt{51}}{7}\)

4 tháng 8 2021

Ảnh 1 là bài 1,3. Ảnh 2 là bài 2 nhé bạn.

undefined

undefined

 

Bài 3: 

Ta có: \(A=\cos^220^0+\cos^240^0+\cos^250^0+\cos^270^0\)

\(=\left(\sin^270^0+\cos^270^0\right)+\left(\sin^250^0+\cos^250^0\right)\)

=1+1

=2