Cho x , y , z tỉ lệ với 3 ; 5 ; 6 . Tính \(m=\dfrac{2x-3y+4z}{x-11y-4z}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
BH
15 tháng 12 2020
3)
Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8 nên xy=0,8 (1)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5 nên xz=0,5 (2)
Từ (1) và (2) suy ra xy/xz=0,8*0,5 hay y/z=0,4 suy ra y=0,4*z
Vậy y tỉ lệ thuận với z theo hệ số tỉ lệ là 0,4
8 tháng 12 2016
Giải:
Ta có: \(xy=3\)
\(\Rightarrow y=\frac{3}{x}\)
\(yz=\frac{-3}{4}\)
\(\Rightarrow\frac{3}{x}.z=\frac{-3}{4}\)
\(\Rightarrow z=\frac{-3}{4}:\frac{3}{x}\)
\(\Rightarrow z=\frac{-4}{x}\)
Vậy x tỉ lệ nghịch với z theo hệ số tỉ lệ -4
5 tháng 12 2021
a: x=2y
nên y=2/x
yz=-3
\(\Leftrightarrow z\cdot\dfrac{2}{x}=-3\)
\(\Leftrightarrow2z=-3x\)
Theo đề bài, ta có:
\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{2x}{6}\)=\(\dfrac{3y}{15}\)=\(\dfrac{4z}{24}\)
\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{x}{3}\)=\(\dfrac{11y}{55}\)=\(\dfrac{4z}{24}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{2x}{6}\)=\(\dfrac{3y}{15}\)=\(\dfrac{4z}{24}\)= \(\dfrac{2x-3y+4z}{6-15+24}\)=\(\dfrac{2x-3y+4z}{15}\)(*)
\(\dfrac{x}{3}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\)=\(\dfrac{x}{3}\)=\(\dfrac{11y}{55}\)=\(\dfrac{4z}{24}\)=\(\dfrac{x-11y-4z}{3-55-24}\)=\(\dfrac{x-11y-4z}{-76}\)(**)
Từ (*) và (**) suy ra:
\(\dfrac{2x-3y+4z}{15}\)=\(\dfrac{x-11y-4z}{-76}\)=\(\dfrac{2x-3y+4z}{x-11y-4z}\)=\(\dfrac{15}{-76}\)
=> m=\(\dfrac{15}{-76}\)
Vậy m=\(\dfrac{15}{-76}\)