Cho tam giác ABC với A( 1; 3) ; B( -2; 4) và C( -1; 5) và đường thẳng d: 2x- 3y + 6= 0. Đường thẳng d cắt cạnh nào của tam giác ABC?
A. Cạnh AC.
B. Không cạnh nào.
C. Cạnh AB.
D. Cạnh BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Ta có:
suy ra
do đó; 2 vecto AB và AC vuông góc với nhau
suy ra tam giác ABC vuông tại A.
Ta có: B C = ( 4 − 2 ) 2 + ( 3 + 4 ) 2 = 53
Phương trình BC : Qua B (2; -4) và nhận VTCP
B
C
→
(
2
;
7
)
nên có VTPT
n
→
(
7
;
−
2
)
:
7( x -2) – 2 ( y + 4) = 0 hay 7x - 2y - 22 = 0
Khoảng cách từ A đến BC là:
d ( A ; B C ) = 7. ( − 1 ) − 2. ( − 1 ) − 22 7 2 + ( − 2 ) 2 = 27 53
Diện tích tam giác ABC là: S = 1 2 B C . d ( A ; B C ) = 1 2 . 53 . 27 53 = 27 2
ĐÁP ÁN C.
Giải:
a) Diện tích tam giác ABC = 1/2 x AH x BC
Diện tích tam giác ABE = 1/2 x AH x BE
= 1/2 x AH x 2/3 BC
= 1/2 x AH x BC x 2/3
= Diện tích tam giác ABC x 2/3
Vậy: Diện tích tam giác ABE = 2/3 diện tích tam giác ABC.
b) Vì chiều cao DE có D là trung điểm nên Diện tích tam giác ABE = 2 lần diện tích tam giác BDE
= 12 x 2
= 24
Diện tích tam giác ABC = 24 : 2/3
= 36
c) Diện tích hình tứ giác ADEC là: 36 - 24 = 12 ( cm vuông)
Đáp số: ...........................
2. \(\Delta ABC\)có AB=AC \(\Rightarrow\Delta ABC\)cân.
AD là phân giác \(\Delta ABC\)mà \(\Delta ABC\)cân.
\(\Rightarrow AD\)l là đường trung trực \(\Delta ABC\)..
\(\Rightarrow AD\)là đường cao \(\Delta ABC\)..
\(\Leftrightarrow AD\perp BC\).
Đáp án B
Thay tọa độ điểm A vào phương trình đường thẳng d ta được -2.
Thay tọa độ điểm B vào phương trình đường thẳng d ta được -10.
Thay tọa độ điểm C vào phương trình đường thẳng d ta được. -11.
Suy ra:
A và B; B và C; C và A đôi một nằm cùng phía đối với d. Nên đường thẳng d không cắt cạnh nào của tam giác.