Bài tập : Chứng minh rằng : BCNN ( n ; 37n + 1 ) = 37n^2 + n với mọi số tự nhiên lớn hơn 0
GIÚP MÌNH VỚI ! AI NHANH VÀ ĐÚNG CHO 3 TICK !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt d = UCLN(a,b) => a = d.a'
b = d.b'
(a' ; b' nguyên tố cùng nhau)
Ta cần chứng minh : BCNN(a,b). d = a.b hay BCNN(a,b)=\(\dfrac{a.b}{d}\)
Đặt m= \(\dfrac{a.b}{d}\)
m= b.\(\dfrac{a}{d}\)=b.a'
mà a' ; b' nguyên tố cùng nhau nên m thuộc BCNN(a,b) =>BCNN(a,b)=\(\dfrac{a.b}{d}\)
BCNN(a,b) = \(\dfrac{a.b}{UCLN\left(a;b\right)}\)
=> BCNN(a,b). UCLN(a,b) = a.b
Gọi ƯCLN của 6n+1 và n là d;
nên 6n+1-6n=1 chia hết cho d => d=1 hoặc -1
=>(6n+1;n)=1
=>BCNN(6n+1;n)=(6n+1)n=6n^2+1
Lời giải:
Tập $A$ có 4 phần tử nên nó là tập hợp hữu hạn.
Vì tập hợp A có 4 phần tử liên tiếp nên đây là một tập hợp hữu hạn
*Xét n=1
=> 37n+1 chia hết cho 1
*Xét n>1
=> 37n+1 không chia hết cho n
Vậy BCNN (n;37n+1) = n(37n+1)= 37n2 + . với mọi n > 0