Bài toán 40. Tìm x, y biết:
a. 5x – 17y = 2xy và x – y = 5; 2x + 3y = xy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(5x-17y=2xy\)
\(\Rightarrow5x-17y=2\left(2x+3y\right)\)
\(\Rightarrow5x-17y=4x+6y\)
\(\Rightarrow11x=23y\)
\(\Rightarrow\frac{x}{23}=\frac{y}{11}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{23}=\frac{y}{11}=\frac{x-y}{23-11}=\frac{5}{12}\)
\(\Rightarrow x=\frac{115}{12};y=\frac{55}{12}\)
Vậy...
Bạn kiểm tra lại nhé, bài này mk ko chắc lắm đâu, có thể bị sai nhé
a: =>xy-x+y=0
=>x(y-1)+y-1=-1
=>(y-1)(x+1)=-1
=>(x+1;y-1) thuộc {(1;-1); (-1;1)}
=>(x,y) thuộc {(0;0); (-2;2)}
b: =>x(y+2)+y-1=0
=>x(y+2)+y+2-3=0
=>(y+2)(x+1)=3
=>(x+1;y+2) thuộc {(1;3); (3;1); (-1;-3); (-3;-1)}
=>(x,y) thuộc {(0;1); (2;-1); (-2;-5); (-4;-3)}
c:
y>=3
=>y+5>=8
=>y(x-7)+5x-35=-35
=>(x-7)(y+5)=-35
mà y+5>=8
nên (y+5;x-7) thuộc (35;-1)
=>(y;x) thuộc {(30;6)}
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
Bài 11:
Ta có: \(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)
\(\Leftrightarrow n^2\in\left\{0;4;64\right\}\)
hay \(n\in\left\{0;-2;2;8;-8\right\}\)
c: =>x+y-xy=-16
=>x+y-xy-1=-17
=>x(1-y)-(1-y)=-17
=>(1-y)(x-1)=-17
=>(x-1;y-1)=17
=>(x-1;y-1) thuộc {(1;17); (17;1); (-1;-17); (-17;-1)}
=>(x,y) thuộc {(2;18); (18;2); (0;-16); (-16;0)}
b: Tham khảo:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
ta có : a) xy- 5x + y = 17
=) x . ( y - 5 ) . ( y - 5 ) = 17 - 5
=) (x+1) . ( y - 5 ) = 12
=) x + 1 \(\in\) { 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) x \(\in\){ 11 ; 5 ; 2 ;1 ; 0 ; 3 }
=) y - 5 \(\in\){ 12 ; 6 ; 3 ; 2 ; 1 ; 4 }
=) y \(\in\){ 17 ; 11 ; 8 ; 7 ; 6 ; 9 }
vậy ta có 6 TH x,y là : ( 0 ; 17 ) , ( 1 ; 11 ) , ( 2 ; 9 ) , ( 11 ; 6 ) , ( 5 ; 7 ) , ( 3 ; 8 )
Bài giải
a) xy - 5x + y = 17
x(y - 5) + y = 17
x(y - 5) + y - 5 = 17 - 5 = 12
x(y - 5) + (y - 5) = 12
x(y - 5) + 1(y - 5) = 12
(x + 1)(y - 5) = 12
Bạn tự làm tiếp nha, xem số nào nhân với số nào bằng 12 rồi làm tiếp.
b) 3x + 4y - xy = 15
3x + (4y - xy) = 15
3x + y(4 - x) = 15
12 - [3x + y(4 - x)] = 12 - 15 = -3
12 - 3x - y(4 - x) = -3 (12 - 3x = 3.4 - 3x = 3(4 - x))
3(4 - x) - y(4 - x) = -3
(3 - y)
2x+3y =xy
nêu khác 0 thi xy lẻ nên x lẻ y lẻ vì 3y lẻ vói mọi y. suy ra x-y chẵn trái giả thiết
nế x=0 thi 3y=0 không có y thỏa mạn
vạy ko co x, y thỏa mạn bài toán