Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = − 3 ; 2 và b → = − 1 ; − 7 . Tìm tọa độ vectơ c → biết c → . a → = 9 và c → . b → = − 20.
A. c → = − 1 ; − 3 .
B. c → = − 1 ; 3 .
C. c → = 1 ; − 3 .
D. c → = 1 ; 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Áp dụng hệ quả của định lí cosin ta có
Do đó; góc giữa 2 vecto đã cho là 450.
Ta có cos a → , b → = a → . b → a → . b → = 4.1 + 3.7 16 + 9 . 1 + 49 = 2 2 ⇒ a → , b → = 45 0 .
Chọn C.
Gọi c → = x ; y .
Ta có c → . a → = 9 c → . b → = − 20 ⇔ − 3 x + 2 y = 9 − x − 7 y = − 20 ⇔ x = − 1 y = 3 ⇒ c → = − 1 ; 3 .
Chọn B.
Ta có cos a → , b → = a → . b → a → . b → = − 1.2 + 1.0 − 1 2 + 1 2 . 2 2 + 0 2 = − 2 2 .
Chọn B.
Ta có cos a → , b → = a → . b → a → . b → = − 1.2 + 1.0 − 1 2 + 1 2 . 2 2 + 0 2 = − 2 2 .
Chọn B.
Gọi d → = x ; y .
Từ giả thiết, ta có hệ − 2 x + 3 y = 4 4 x + y = − 2 ⇔ x = − 5 7 y = 6 7 .
Chọn B.
Ta có: a → . b → = 1.6 − 3. x = 6 − 3 x
Để hai vecto này vuông góc với nhau khi:
a → . b → = 0 ⇔ 6 − 3. x = 0 ⇔ x = 2
Chọn B.
Ta có a → = m . u → + v → = 4 m + 1 ; m + 4 b → = i → + j → = 1 ; 1 .
Yêu cầu bài toán ⇔ cos a → , b → = cos 45 0 = 2 2
⇔ 4 m + 1 .1 + m + 4 .1 2 4 m + 1 2 + m + 4 2 = 2 2 ⇔ 5 m + 1 2 17 m 2 + 16 m + 17 = 2 2
⇔ 5 m + 1 = 17 m 2 + 16 m + 17 ⇔ m + 1 ≥ 0 25 m 2 + 50 m + 25 = 17 m 2 + 16 m + 17 ⇔ m = − 1 4 .
Chọn C.
Gọi c → = x ; y .
Ta có c → . a → = 9 c → . b → = − 20 ⇔ − 3 x + 2 y = 9 − x − 7 y = − 20 ⇔ x = − 1 y = 3 ⇒ c → = − 1 ; 3 .
Chọn B