Bài 1
a) Tìm hai số nguyên a , b biết : a > 0 và (a + 2) . (b – 3) = 5.
b) Tính tổng A + b biết rằng A là tổng các số nguyên âm lẻ có hai chữ số, B là tổng các số nguyên âm chẵn có hai chữ số.
c) Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p - 1)(p + 1) chia hết cho 24.
giúp mình với mình cần gấp mình tick cho
a) Tìm hai số nguyên a , b biết :
(a + 2) . (b – 3) = 5.
Vì a,b là số nguyên => a+2;b-3 là số nguyên
=> a+2;b-3 thuộc Ư(5)
Ta có bảng:
Vậy..........................................................................................................................................
b)Dễ rồi nên bn tự làm nha
c)+)Ta có:p là số nguyên tố;p>3
=>p\(⋮̸3\)
=>p chia 3 dư 1 hoặc p chia 3 dư 2
=>p=3k+1 hoặc p=3k+2 (k\(\inℕ^∗\))
*Th1:p=3k+1 (k\(\inℕ^∗\))
=>(p-1).(p+1)=(3k+1-1).(3k+1+1)=3k.(3k+2)\(⋮\)3(1)
+)Ta lại có:p là số nguyên tố;p>3
=>p là số lẻ
=>p-1 là số chẵn
=>p+1 là số chẵn
=>(p-1) và (p+1) là 2 số chẵn liên tiếp
=>(p-1).(p+1)\(⋮\)8(2)
+)Mà ƯCLN(3,8)=1(3)
+)Từ (1);(2) và (3)
=>(p-1).(p+1)\(⋮\)3.8
=>(p-1).(p+1)\(⋮\)24
Vậy (p-1).(p+1)\(⋮\)24
*TH2:Bạn làm tương tự nha bài này dài lắm nên mk ko làm hết dc
Chúc bn học tốt