K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

Gọi d là đường thẳng qua M và vuông góc \(\Delta_1\)

\(\Rightarrow d\) nhận (2;1) là 1 vtpt

Phương trình d:

\(2\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow2x+y-4=0\)

(C) tiếp xúc \(\Delta_1\) tại M \(\Rightarrow\) tâm I của (C) nằm trên d

\(\Rightarrow I\) là giao điểm d và \(\Delta_2\Rightarrow\) tọa độ I là nghiệm:

\(\left\{{}\begin{matrix}2x+y-4=0\\x-5y-5=0\end{matrix}\right.\) \(\Rightarrow I\left(\dfrac{25}{11};-\dfrac{6}{11}\right)\)

\(\Rightarrow\overrightarrow{IM}=\left(-\dfrac{14}{11};\dfrac{28}{11}\right)\Rightarrow R^2=IM^2=\left(-\dfrac{14}{11}\right)^2+\left(\dfrac{28}{11}\right)^2=\dfrac{980}{121}\)

Phương trình (C):
\(\left(x-\dfrac{25}{11}\right)^2+\left(y+\dfrac{6}{11}\right)^2=\dfrac{980}{121}\)

9 tháng 4 2022

Gọi \(I\left(5y+5;y\right)\) \(\Rightarrow\overrightarrow{MI}=\left(5y+4;y-2\right)\)

Ta có \(\Delta_1:x-2y+3=0\) có VTPT là \(\vec{n}=\left(1;-2\right)\) nên nó có VTCP là \(\vec{u}=\left(2;1\right)\).

Do đường tròn tâm \(I\) tiếp xúc với \(\Delta_1\) nên \(\overrightarrow{MI}\perp\overrightarrow{u}\)

\(\Rightarrow\overrightarrow{MI}.\overrightarrow{u}=0\Rightarrow2\left(5y+4\right)+1\left(y-2\right)=0\) \(\Rightarrow y=-\dfrac{6}{11}\)

\(\Rightarrow I\left(\dfrac{25}{11};-\dfrac{6}{11}\right)\Rightarrow IM=\dfrac{14\sqrt{5}}{11}\)

Ta có PT đường tròn: \(\left(x-\dfrac{2}{11}\right)^2+\left(y+\dfrac{6}{11}\right)^2=\dfrac{980}{121}\)

1. Cách viết phương trình đường thẳng đi qua 2 điểm1.1. Cách 1: Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)Gọi phương trình đường thẳng có dạng d: y=ax+bVì A và B thuộc phương trình đường thẳng d nên ta có hệThay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.1.2. Cách 2 giải nhanhTổng quát dạng bài viết phương trình đường...
Đọc tiếp

1. Cách viết phương trình đường thẳng đi qua 2 điểm

1.1. Cách 1: 

Giả sử 2 điểm A và B cho trước có tọa độ là: A(a1;a2) và B(b1;b2)

  • Gọi phương trình đường thẳng có dạng d: y=ax+b
  • Vì A và B thuộc phương trình đường thẳng d nên ta có hệ
  • Thay a và b ngược lại phương trình đường thẳng d sẽ được phương trình đường thẳng cần tìm.

1.2. Cách 2 giải nhanh

Tổng quát dạng bài viết phương trình đường thẳng đi qua 2 điểm: Viết phương trình đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2).


Cách giải:
Giả sử đường thẳng đi qua 2 điểm A(x1;y1) và B(x2;y2) có dạng: y = ax + b (y*)
Vì (y*) đi qua điểm A(x1;y1) nên ta có: y1=ax1 + b (1)
Vì (y*) đi qua điểm B(x2;y2) nên ta có: y2=ax2 + b (2)
Từ (1) và (2) giải hệ ta tìm được a và b. Thay vào sẽ tìm được phương trình đường thẳng cần tìm.

Bài tập ví dụ viết phương trình đường thẳng đi qua 2 điểm

Bài tập 1: Viết phương trình đường thẳng đi qua hai điểm A (1;2) và B(0;1).

Bài giải: 

Gọi phương trình đường thẳng là d: y=ax+by=ax+b

Vì đường thẳng d đi qua hai điểm A và B nê n ta có:

⇔  

Thay a=1 và b=1 vào phương trình đường thẳng d thì d là: y=x+1

Vậy phương trình đường thẳng đi qua 2 điểm A và B là : y=x+1

Bài tập 2: Cho Parabol (P):y=–ײ . Viết phương trình đường thẳng đi qua hai điểm A và B biết  A và B là hai điểm thuộc (P) và có hoành độ lần lượt là 1 và 2.

Bài giải

Với bài toán này chúng ta chưa biết được tọa độ của A và B là như nào. Tuy nhiên bài toán lại cho A và B thuộc (P) và có hoành độ rồi. Chúng ta cần đi tìm tung độ của điểm A và B là xong.

Tìm tọa độ của A và B:

Vì A có hoành độ bằng -1 và thuộc (P) nên ta có tung độ y =−(1)²=–1 => A(1;−1)

Vì B có hoành độ bằng 2 và thuộc (P) nên ta có tung độ y =–(2)²=−4 ⇒ B(2;−4) còn  cách  khác k ?

0
10 tháng 3 2022

Gọi đường thẳng đi qua A là d'.

a) Ta có: \(d'\perp d.\)

\(\Rightarrow\) VTPT của d là VTCP của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)

b) Ta có: \(d'//d.\)

\(\Rightarrow\) VTPT của d là VTPT của d'.

Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)

\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)

\(\Rightarrow\) Phương trình đường thẳng d' là:

\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)