a) Xác địch x,y trong cấp số cộng sau: x ; 4 ; y ; 4x ; 10 ; 2y ; 14 ; ...
b) Từ cấp số cộng trên tìm số hạng Un để Sn = 420.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x^2-\dfrac{2}{x}\right)^8=\sum\limits^8_{k=0}C^k_8.x^{16-2k}.\dfrac{\left(-2\right)^k}{x^k}\)
\(=\sum\limits^8_{k=0}C^k_8.\left(-2\right)^k.x^{16-3k}\)
\(16-3k=1\Leftrightarrow k=5\)
\(\Rightarrow\) Hệ số của x trong khai triển là \(C^5_8.\left(-2\right)^5=-1792\)
b, \(\left\{{}\begin{matrix}u_{12}=17\\S_{12}=72\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+11d=17\\\dfrac{12.\left(u_1+u_{12}\right)}{2}=72\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+11d=17\\u_1+17=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\u_1=-5\end{matrix}\right.\)
Đáp án D
Câu C đúng theo điều kiện cần của cực trị.
Câu A, B đúng theo điều kiện đủ của cực trị. Câu D sai theo điều kiện đủ cho cực trị tồn tại
Lời giải:
a) Theo tính chất về cấp số cộng là \(u_k=\frac{u_{k-1}+u_{k+1}}{2}\) thì có:
\(\left\{\begin{matrix} y=\frac{4+4x}{2}=2x+2\\ 2y=\frac{10+14}{2}=12\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=6\\ x=2\end{matrix}\right.\)
Vậy ta thu được dãy $(u_n)$: \(2,4,6,8,10,12,14,.....\) với \(u_n=2n\)
\(S_n=u_1+u_2+...+u_n=2.1+2.2+2.3+...+2n\)
\(=2(1+2+3+...+n)=2.\frac{n(n+1)}{2}=n(n+1)\)
Để \(S_n=420\Rightarrow n(n+1)=420\)
\(\Rightarrow n=20\)
Do đó \(U_n=U_{20}=2.20=40\)