Trong không gian với hệ tọa độ Oxy tính khoảng cách từ điểm M(1; 2; -3) đến mặt phẳng (P): x +2y - 2z -2 = 0
A. 1
B. 11 3
C. 1 3
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi M ( a ; b ; c ) ⇒ d M , O x z = b = 2 ; d M , O y z = a = 3
Do O M = 7 ⇒ a 2 + b 2 + c 2 = 49 ⇒ c = 49 - a 2 - b 2 = 6
Vậy d M ; O x y = 6 .
Đáp án C
Áp dụng STUDY TIPS bên, ta có:
Khoảng cách từ điểm M đến mặt phẳng O x y là a=2.
Khoảng cách từ điểm M đến mặt phẳng O x y là b=1.
Khoảng cách từ điểm M đến mặt phẳng O x y là c=3 .
Vậy P = a + b 2 + c 3 = 2 + 1 2 + 3 3 = 30 .
Đáp án D
Nhận thấy d 1 ⊥ d 2 . Gọi α là mặt phẳng cách đều d 1 và d 2 nên cả hai đường thẳng đều song song với mặt phẳng α . Khi đó, vector pháp tuyến a → của mặt phẳng α cùng phương với vector u 1 → , u 2 → (với u 1 → , u 2 → lần lượt là các vec tơ chỉ phương của hai đường thẳng d 1 , d 2 ).
+ Chọn a → = 1 ; 5 ; 2 , suy ra phương trình mặt phẳng α có dạng
α : x + 5 y + 2 z + d = 0
Chọn A 2 ; 1 ; 0 và B 2 ; 3 ; 0 lần lượt thuộc đường thẳng d 1 và d 2 , ta có
d A ; α = d B ; β ⇒ d = − 12 ⇒ α : x + 5 y + 2 z − 12 = 0
+ Khoảng cách từ điểm M − 2 ; 4 ; − 1 đến mặt phẳng α : d M ; α = 2 30 15
Đường thẳng ∆ đi qua A(1;1;0) có VTCP
Chọn C.
Cách 2. Tìm tọa độ hình chiếu H của M trên ∆ . Khi đó d(M, ∆ ) = MH
Đáp án C
Phương trình mặt phẳng (P) đi qua M, vuông góc với d là ( P ) : x + y - z - 2 = 0
Gọi H là giao điểm của (P) và d suy ra H(1;1;0)
Mà H là hình chiếu vuông góc của M trên d ⇒ d M ; d = M H = 2 2
Chọn D