cho \(\overrightarrow{a}\) =(2;4) \(\overrightarrow{b}\) ( -3;1) và \(\overrightarrow{c}\)( 5; -2) tọa độ vecto \(\overrightarrow{u}\) = 2\(\overrightarrow{a}\) + 3\(\overrightarrow{b}\) - 5\(\overrightarrow{c}\) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{x}\) ⊥ \(\overrightarrow{y}\)
⇒ \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{2a}-\overrightarrow{b}\right)=0\). Đặt \(\left|\overrightarrow{a}\right|=a;\left|\overrightarrow{b}\right|=b\)
⇒ 2a2 - \(\overrightarrow{a}.\overrightarrow{b}\) + 2\(\overrightarrow{a}.\overrightarrow{b}\) - b2 = 0
⇒ \(\overrightarrow{a}.\overrightarrow{b}\) = b2 - 2a2 = 4 - 4 = 0
⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=90^0\)
\(2\overrightarrow{y}-\overrightarrow{z}=2\overrightarrow{a}-2\overrightarrow{b}-2\overrightarrow{c}+3\overrightarrow{b}+2\overrightarrow{c}=2\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{x}\)
\(\Rightarrow\) Ba vecto \(\overrightarrow{x},\overrightarrow{y},\overrightarrow{z}\) đồng phẳng
Lời giải:
$\overrightarrow{i}=(1,0), \overrightarrow{j}=(0,1)$
$\Rightarrow \overrightarrow{i}-\overrightarrow{j}=(1-0,0-1)=(1,-1)$
Bài 2:
$\overrightarrow{a}+2\overrightarrow{b}=(3+2.-1, -4+2.2)=(1, 0)$
\(\overrightarrow{a}\perp\overrightarrow{b}\Rightarrow\overrightarrow{a}.\overrightarrow{b}=0\)
\(\left(2\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=2a^2+2\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{a}.\overrightarrow{b}-b^2\)
\(=2a^2-b^2+\overrightarrow{a}.\overrightarrow{b}\)
\(=2.1-2+0=0\)
\(\Rightarrow\left(2\overrightarrow{a}-\overrightarrow{b}\right)\perp\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
\(cos\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=\dfrac{\overrightarrow{b}\left(\overrightarrow{a}-\overrightarrow{b}\right)}{\left|\overrightarrow{b}\right|.\left|\overrightarrow{a}-\overrightarrow{b}\right|}=\dfrac{\overrightarrow{a}.\overrightarrow{b}-\overrightarrow{b}^2}{1.\sqrt{3}}=\dfrac{2.1.cos\dfrac{\pi}{3}-1^2}{\sqrt{3}}=0\)
\(\Rightarrow\left(\overrightarrow{b};\overrightarrow{a}-\overrightarrow{b}\right)=90^0\)
???????????????????????????????????????????????????????????????
b) Ta có :
\(IB=2IC\Leftrightarrow IB=2\left(IB+BC\right)\Leftrightarrow-IB=2BC\Leftrightarrow BI=2BC\)
\(JC=-\frac{1}{2}JA\Leftrightarrow JB+BC=-\frac{1}{2}\left(JB+BA\right)\)
\(\Leftrightarrow\frac{3}{2}JB=-\frac{1}{2}BA-BC\Leftrightarrow JB=-\frac{1}{3}BA-\frac{2}{3}BC\)
\(\Rightarrow BJ=\frac{1}{3}BA+\frac{2}{3}BC\)
\(\Rightarrow IJ=BJ-BI=\frac{1}{3}BA+\frac{2}{3}BC-2BC=\frac{1}{3}BA-\frac{4}{3}BC\)
\(KA=-KB\Leftrightarrow KB+BA=-KB\Leftrightarrow2KB=-BA\)
\(\Rightarrow2BK=BA\Leftrightarrow BK=\frac{1}{2}BA\)
\(\Rightarrow JK=BK-BJ=\frac{1}{2}BA-\frac{2}{3}BC=\frac{1}{6}BA-\frac{2}{3}BC\)
\(=\frac{1}{2}\left(\frac{1}{3}BA-\frac{4}{3}BC\right)=\frac{1}{2}IJ\)
Vậy \(I,J,K\)thẳng hàng
\(\overrightarrow{u}=2\overrightarrow{a}+3\overrightarrow{b}-5\overrightarrow{c}=\left(-30;21\right)\)