K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Lời giải:
Từ \(\frac{x}{3}=\frac{y}{4}; \frac{y}{5}=\frac{z}{6}\Rightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{24}\).

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=t(t\neq 0)\Rightarrow x=15t; y=20t; z=24t\)

Khi đó:

\(A=\frac{2x+3y+4z}{3x+4y+5z}=\frac{2.15t+3.20t+4.24t}{3.15t+4.20t+5.24t}=\frac{186t}{245t}=\frac{186}{245}\)

NV
20 tháng 4 2019

Chỉ tìm được min với điều kiện \(x;y;z\) dương, bất kì thì chịu

Áp dụng BĐT \(\frac{a^n+b^n}{a^{n-1}+b^{n-1}}\ge\frac{a^{n-1}+b^{n-1}}{a^{n-2}+b^{n-2}}\) ta được:

\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{z^4+y^4}{z^3+y^3}+\frac{x^4+z^4}{x^3+z^3}\ge\frac{x^3+y^3}{x^2+y^2}+\frac{z^3+y^3}{z^2+y^2}+\frac{x^3+z^3}{x^2+y^2}\)

\(P\ge\frac{x^2+y^2}{x+y}+\frac{z^2+y^2}{z+y}+\frac{x^2+z^2}{x+z}\ge\frac{x+y}{2}+\frac{z+y}{2}+\frac{x+z}{2}=x+y+z=2017\)

\(\Rightarrow P_{min}=2017\) khi \(x=y=z=\frac{2017}{3}\)

5 tháng 11 2016

Ta chứng minh \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\)(luôn đúng)

Áp dụng vào bài toán ta có:

\(x^4+y^4\ge x^3y+xy^3\)\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3\)\(=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\).Tương tự ta cũng có:

\(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2};\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)

Cộng theo vế ta có: \(VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Dấu = khi \(x=y=z=\frac{2008}{3}\)

3 tháng 10 2020

Áp dụng BĐT Schwars và BĐT AM - GM:
\(\frac{x}{x^4+1+2xy}\le\frac{1}{4}x\left(\frac{1}{x^4+1}+\frac{1}{2xy}\right)=\frac{1}{4}\left(\frac{x}{x^4+1}+\frac{1}{2y}\right)\le\frac{1}{4}\left(\frac{x}{2x^2}+\frac{1}{2y}\right)=\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}\right)\).

Tương tự rồi cộng vế với vế ta được:

\(\frac{x}{x^4+1+2xy}+\frac{y}{y^4+1+2yz}+\frac{z}{z^4+1+2zx}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2z}+\frac{1}{2x}\right)=\frac{1}{4}.3=\frac{3}{4}\left(đpcm\right)\)

NV
3 tháng 10 2020

Đặt vế trái là P

\(P\le\frac{x}{2x^2+2xy}+\frac{y}{2y^2+2yz}+\frac{z}{2z^2+2zx}=\frac{1}{2\left(x+y\right)}+\frac{1}{2\left(y+z\right)}+\frac{1}{2\left(z+x\right)}\)

\(P\le\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

14 tháng 5 2018

Ta dễ dàng chứng minh BĐT

\(x^4+y^4\ge x^3y+xy^3\)

\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x+y\right)\left(x^3+y^3\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

Chứng minh tương tự, cộng theo vế, ta có:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{2\left(x+y+z\right)}{2}=2\)

Dấu "=" xảy ra khi x=y=z=1/3

23 tháng 8 2017

bài 1
a,