Tìm x,y,x biết 2x,3y tỉ lệ thuận 3,4,3x và 4z tỉ lệ nghịch \(\frac{1}{2};\frac{2}{3}\)và\(\frac{3}{4}x-2y+\frac{1}{3}z\)=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x, y, z biết 2x + 3y + 4z = -54; x và y tỉ lệ nghịch với 5 và 3; y và z tỉ lệ thuận với 10 và 3.
a, Vì x, y tỉ lệ thuận với 2; 5
\(\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
Do đó: \(\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{5}=3\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=15\end{cases}}\)
Vậy...
Vì x, y, z tỉ lệ thuận với 8; 14; 20
\(\Rightarrow\frac{x}{8}=\frac{y}{14}=\frac{z}{20}\)\(\Rightarrow\frac{2x}{16}=\frac{3y}{42}=\frac{4z}{80}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{16}=\frac{3y}{42}=\frac{4z}{80}=\frac{2x+3y+4z}{16+42+80}=\frac{69}{138}=\frac{1}{2}\)
Do đó: \(\hept{\begin{cases}\frac{x}{8}=\frac{1}{2}\\\frac{y}{14}=\frac{1}{2}\\\frac{z}{20}=\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=7\\z=10\end{cases}}\)
Vậy...
Vì y tỉ lệ ngịch với x theo hệ số tỉ lệ là \(\frac{1}{2}\)\(\Rightarrow xy=\frac{1}{2}\)(1)
Vì x tỉ lệ thuận với z theo hệ số tỉ lệ là \(\frac{2}{3}\)\(\Rightarrow x=\frac{2}{3}z\)(2)
They (2) vào (1) ta được \(\frac{2}{3}.z.y=\frac{1}{2}\)\(\Rightarrow yz=\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\)
Vậy y tỉ lệ nghịch với z theo hệ số tỉ lệ là \(\frac{3}{4}\)