TÌM X
\(\uparrow\left(-2\frac{2}{3}\right)^2-x\uparrow-\frac{1}{3}=0;\)\(2\uparrow x-1\uparrow+\left(\frac{-1}{2}\right)^5=\left(\frac{-1}{4}\right)^3\)
Tớ ko biết viết dấu tuyệt đối nên tớ mới viết dấu mũi tên hướng lên trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^8-1}{\left(x^4+1\right)\left(x^2-1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^4+x^2+1\right)}{\left(x^4+1\right)\left(x^2-1\right)}\)
\(=\frac{x^4+x^2+1}{x^4+1}\)
\(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\)
\(=\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)
\(=\frac{\left(x+y-2\right)\left(x+y+2\right)}{\left(x+2-y\right)\left(x+2+y\right)}\)
\(=\frac{x+y-2}{x+2-y}\)
\(\frac{4x^2+12x+9}{2x^2-x-6}\)
\(=\frac{\left(2x+3\right)^2}{2x^2-4x+3x-6}\)
\(=\frac{\left(2x+3\right)^2}{2x\left(x-2\right)+3\left(x-2\right)}\)
\(=\frac{\left(2x+3\right)^2}{\left(2x+3\right)\left(x-2\right)}\)
\(=\frac{2x+3}{x-2}\)
\(\frac{25-10x+x^2}{xy-5y}\)
\(=\frac{\left(5-x\right)^2}{-y\left(5-x\right)}\)
\(=-\frac{5-x}{y}\)
\(\frac{\left|x\right|-3}{x^2-9}\)
\(=\frac{x-3}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{1}{x+3}\)
\(\frac{3\left|x-4\right|}{3x^2-3x-36}\)
\(=\frac{3\left(x-4\right)}{3\left(x^2-x-12\right)}\)
\(=\frac{x-4}{x^2-4x+3x-12}\)
\(=\frac{x-4}{x\left(x-4\right)+3\left(x-4\right)}\)
\(=\frac{x-4}{\left(x-4\right)\left(x+3\right)}\)
\(=\frac{1}{x+3}\)
1. Tam giác vuông
3. x= 9
4. sai đề òi bạn
5. 3 cm
6. số dư là 0
7. BAC= 75 độ
Câu 1. Tam giác vuông
Câu 2. không có giá trị nào
Câu 3. x=9
Câu 5. 3 cm
Câu 6. Số dư là 0
Câu 7. Góc BAC=75 độ
Câu 8. Không có giá trị nào cả
a) ta có : \(D=R\backslash\left\{0\right\}\) \(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3}{\left|-x\right|+4\left(-x\right)^2}=\dfrac{x^4+3}{\left|x\right|+4x^2}=f\left(x\right)\)
\(\Rightarrow\) hàm số này là hàm chẳn.
b) ta có : \(D=R\backslash\left\{\pm1\right\}\) \(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\dfrac{3\left(-x\right)^4-\left(-x\right)^2+5}{\left|-x\right|^5-1}=\dfrac{3x^4-x^2+5}{\left|x\right|^5-1}=f\left(x\right)\)
\(\Rightarrow\) hàm số này là hàm chẳn .
c) ta có : \(D=\left(-\infty;-3\right)\cup\left(3;+\infty\right)\) \(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\dfrac{1}{\sqrt{\left(-x\right)^2-9}}=\dfrac{1}{\sqrt{x^2-9}}=f\left(x\right)\)
\(\Rightarrow\) hàm số này là hàm chẳn.
d) ta có : \(D=R\) \(\Rightarrow x\in D\) thì \(-x\in D\)
ta có : \(f\left(-x\right)=\dfrac{-x}{\left|-5x+2\right|+\left|-5x-2\right|}=\dfrac{-x}{\left|5x-2\right|+\left|5x+2\right|}=-f\left(x\right)\)
\(\Rightarrow\) hàm số này là hàm lẽ .
a: \(f\left(x\right)=\left|x+2\right|-\left|x-2\right|\)
\(f\left(-x\right)=\left|-x+2\right|-\left|-x-2\right|=\left|x-2\right|-\left|x+2\right|=-f\left(x\right)\)
=>f(x) là hàm số lẻ
b: \(f\left(x\right)=\dfrac{3x^2}{2-\left|x\right|}\)
\(f\left(-x\right)=\dfrac{3\cdot\left(-x\right)^2}{2-\left|-x\right|}=\dfrac{3\cdot x^2}{2-\left|x\right|}=f\left(x\right)\)
=>f(x) là hàm số chẵn
a)\(\frac{1}{3}\)x +\(\frac{2}{5}\)(x-1) = 0
=>\(\frac{1}{3}\)x + \(\frac{2}{5}\)x - \(\frac{2}{5}\)= 0
=>\(\frac{11}{15}\)x -\(\frac{2}{5}\)= 0
=> \(\frac{11}{15}\)x = \(\frac{2}{5}\)
=> x = \(\frac{2}{11}\)
lời giải phần A
Ta có : Số nào nhân với số 0 cũng bằng số 0
Ta xét 2 trường hợp như sau :
Trường hợp 1 : \(\frac{1}{3}x+\frac{2}{5}=0\)
Trường hợp 2 : \(\left(x-1\right)=0\)
như vậy ta có 1 trường hợp , ta thấy ở trường hợp 1 thì xẽ không thể bằng 0 vì phân số 1/3 nhân x = 0 mà cộng với 2/5 \(\ne0\)
Ta đến trường hợp 1 thì ta thấy rất có thể bằng 0 vì nếu x-1 =0 thì 1/3x+ 2/5 .0 thì sẽ bằng 0
\(\Rightarrow x=1\)
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_