Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{x}{8}=\frac{y}{11};\frac{y}{11}=\frac{z}{3}\Rightarrow\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow x=5.8=40\)
\(\Rightarrow y=5.11=55\)
Vậy x = 40 ; y = 55
\(dat:\frac{x}{2}=\frac{y}{5}=k\)
x=2k ; y=5k
x.y=10k2
10 = 10k2
k2 = 1
k = +-1
Voi : k=1 = > x=1.2=2 ; y=5.1=5
voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Ap dung tinh chat day ti so bang nhau ta co :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)
nhieu qua lam ko het
Ta có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt k = \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
Mà x.y.z = -528 => 8k.6k.11k = 528k3 = -528
=> k3 = -1
=> k =-1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
a/ Áp dụng tính chất của tỉ lệ thức ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{-21}{7}\)\(=-3\)
Khi đó: \(\frac{x}{3}=-3\Rightarrow x=-9;\frac{y}{4}=-3\Rightarrow y=-12\)
b/ Áp dụng tính chất của tỉ lệ thức ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-32}{8}=-4\)
Khi đó: \(\frac{x}{3}=-4\Rightarrow x=-12;\frac{y}{5}=-4\Rightarrow y=-20\)
a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{y}=\frac{3k}{4k}\)(k\(\in\)Z,k\(\ne\)0)
\(\Rightarrow x=3k,y=4k\)
\(Tacóx+y=-21\Rightarrow3k+4k=-21\)
=>7k=-21=>k=-3
Tương tự với câu b nhé
Have a nice day!!!!
Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)
Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2
Do đó:\(x=2.8=16\)
\(y=12.2=24\)
\(z=15.2=30\)
Vậy \(x=16\);\(y=24\);\(z=30\)
Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)
\(\Rightarrow\)\(x=2.k\);\(y=5.k\)
Vì \(x.y=10\)nên \(2k.5k=10\)
\(\Rightarrow\)\(10.k^2=10\)
\(\Rightarrow\)\(k^2=1\)
\(\Rightarrow\)\(k=1\)hoặc\(k=-1\)
+) Với \(k=1\)thì \(x=2\);\(y=5\)
+) Với \(k=-1\)thì \(x=-2\);\(y=-5\)
Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)
\(\frac{x}{2}=\frac{y}{5}\)và \(xy=10\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được :
\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)
Với \(y=5\Rightarrow x=\frac{2.5}{5}=2\)
Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)
2). Ta có: x/2=y/3 => x/8 = y/12
y/4=z/5 => y/12 = z/15
=> x/2=y/12=z/15 và x+y-z=10
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10
=> x=2.(-10)=-20
y=12.(-10)=-120
z=15.(-10)=-150
Vậy x=-20; y=-120;z=-150
3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k
=> x=2k
y=5k
Ta có xy = 10
2k.5k =10
10. k2=10
k2 = 10 :10=1
=> k =1; k=-1
+) k = 1
=> x=2.1=2
y=5.1=5
+) k = -1
=> x= 2.(-1) =-2
y=5.(-1) = -5
Vậy x=2;y=5 hoặc x=-2;y=-5
Câu 2:
Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)
Vậy x=16;y=24;z=30
a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)
Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> x = 2 x 10 = 20
y = 2 x 15 = 30
z = 2 x 21 = 42
b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
=> x = 2k ; y = 3k
=> xy = 6.k2
=> 54 = 6.k2
=> k2 = 54 : 6 = 9
=> k = 3 hoặc k = -3
=> x = 3 x 2=6 hoặc x =( -3) x 2 = -6
y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9
\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
\(\text{Áp dụng tính chất DTSBN có}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)
\(\text{Vậy }x=20;y=30;z=42\)
\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(\text{Theo đề, ta có}\)
\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)
\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\) \(y=3.3=9\text{ hoặc }y=-3.3=-9\)
\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)
\(\text{với k=-3\Rightarrow x=-6;y=-9}\)
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
Ta có : \(\dfrac{x}{5}=\dfrac{y}{11}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{y}{11}=\dfrac{x+y}{5+11}=\dfrac{32}{16}=2\)
Do đó :
\(\dfrac{x}{5}=2\) \(\Rightarrow x=2.5=10\)
còn \(?1\) là gì vậy thầy .
Ta có: \(\dfrac{x}{5}=\dfrac{y}{11}=\dfrac{x+y}{5+11}=\dfrac{32}{16}=2\)
⇒ \(x=5.2=10\)
\(y=11.2=22\)