Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)can(2)*(can(2)+1-can(3))
2)-1/(canbậc3của2-1)
3)120
4)1
5)3
6)60
7)chưa làm
8)72
9)47
1) Xét x=7k (k ∈ Z) thì x3 ⋮ 7
Xét x= \(7k\pm1\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm2\) thì x3 ⋮ 7 dư 1 hoặc 6.
Xét x=\(7k\pm3\)\(\) thì x3 ⋮ 7 dư 1 hoặc 6.
Do vế trái của pt chia cho 7 dư 0,1,6 còn vế phải của pt chia cho 7 dư 2. Vậy pt không có nghiệm nguyên.
3) a, Ta thấy x,y,z bình đẳng với nhau, không mất tính tổng quát ta giả thiết x ≥ y ≥ z > 0 <=> \(\dfrac{1}{x}\le\dfrac{1}{y}\le\dfrac{1}{z}\) ,ta có:
\(1=\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{3}{z}< =>z\le3\)
Kết luận: nghiệm của pt là ( x;y;z): (6:3:2), (4;4;2), (3;3;3) và các hoán vị của nó (pt này có 10 nghiệm).
\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)
Để PT có nghiệm nguyên thì \(\Delta\ge0\)
từ đó tìm được các giá trị nguyên của y, rồi tìm được x
pt tương đương với: \(y^2=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
Đặt \(z=x^2+8x\Rightarrow y^2=z^2+7zhay4y^2=\left(2z+7\right)^2hay\left(2z-2y+7\right)\left(2z+2y+7\right)=49\)
chị có thể xạy ra cạc trường hợp sau:
\(TH1:\hept{\begin{cases}2z-2y+7=1\\2z+2y=49\end{cases}\Leftrightarrow\hept{\begin{cases}y=12\\z=9\end{cases}}}\)
\(TH2:\hept{\begin{cases}2z-2y+7=49\\2z+2y+7=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=-12\\z=9\end{cases}}}\)
Trong cạ 2 TH trên ta cóa:
\(z=9\Leftrightarrow x^2+8x=9\Leftrightarrow\orbr{\begin{cases}x=1\\x=-9\end{cases}}\)
\(TH3:\hept{\begin{cases}2z-2y+7=-1\\2z+2y+7=-49\end{cases}\Leftrightarrow\hept{\begin{cases}y=-12\\z=-16\end{cases}}}\)
\(TH4:\hept{\begin{cases}2z-2y+7=-49\\2z+2y+7=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=12\\z=-16\end{cases}}}\)
Trong cạ 2 TH trên ta cóa:
\(z=-16\Leftrightarrow x^2+8x=-16\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
\(TH5:2z-2y+7=2z+2y+7\Leftrightarrow y=z=0\)
Khi đó ta cóa: \(x^2+8x=-16\Leftrightarrow\orbr{\begin{cases}x=0\\x=-8\end{cases}}\)
\(TH6:2z-2y+7=2z+2y+7=-7\Leftrightarrow y=0;z=-7\)
Khi đó ta cóa: \(x^2+8x=-7\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy pt đã cho có các nghiệm nguyên \(\left(x;y\right)=\left(1;12\right),\left(-9;12\right),\left(1;-12\right),\left(0;0\right),\left(-8;0\right),\left(-1;0\right),\left(-7;0\right),\left(-4;12\right),\left(-4;-12\right)\)
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+3y^3=2023\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+3y^3=2023\)
\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)+3y^3=2023\) (*)
Đặt \(x^2+8x+11=t\left(t\inℤ;t\ge-5\right)\), pt (*) trở thành \(\left(t-4\right)\left(t+4\right)+3y^3=2023\)
\(\Leftrightarrow t^2-16+3y^3=2023\)
\(\Leftrightarrow t^2+3y^3=2039\) (1)
Xét pt (1), dễ thấy \(t^2\equiv0\left(mod3\right)\) hoặc \(t^2\equiv1\left(mod3\right)\), lại có \(3y^3\equiv0\left(mod3\right)\) nên \(VT\equiv0\left(mod3\right)\) hoặc \(VT\equiv1\left(mod3\right)\). Nhưng \(VP=2039\equiv2\left(mod3\right)\), điều này có nghĩa là (1) vô nghiệm.
Vậy phương trình đã cho không thể có nghiệm nguyên.
(x+1)(x+3)(x+5)(x+7)+3y3=2023
⇔[(�+1)(�+7)][(�+3)(�+5)]+3�3=2023⇔[(x+1)(x+7)][(x+3)(x+5)]+3y3=2023
⇔(�2+8�+7)(�2+8�+15)+3�3=2023⇔(x2+8x+7)(x2+8x+15)+3y3=2023 (*)
Đặt �2+8�+11=�(�∈Z;�≥−5)x2+8x+11=t(t∈Z;t≥−5), pt (*) trở thành (�−4)(�+4)+3�3=2023(t−4)(t+4)+3y3=2023
⇔�2−16+3�3=2023⇔t2−16+3y3=2023
⇔�2+3�3=2039⇔t2+3y3=2039 (1)
Xét pt (1), dễ thấy �2≡0(���3)t2≡0(mod3) hoặc �2≡1(���3)t2≡1(mod3), lại có 3�3≡0(���3)3y3≡0(mod3) nên ��≡0(���3)VT≡0(mod3) hoặc ��≡1(���3)VT≡1(mod3). Nhưng ��=2039≡2(���3)VP=2039≡2(mod3), điều này có nghĩa là (1) vô nghiệm.
Vậy phương trình đã cho không thể có nghiệm nguyên