Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{2}{x}+\frac{y}{3}=\frac{1}{6}$
$\frac{6+xy}{3x}=\frac{1}{6}$
$\frac{2(6+xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(6+xy)=x$
$\Rightarrow 12+2xy-x=0$
$12=x-2xy$
$12=x(1-2y)$
$\Rightarrow 1-2y$ là ước của $12$
Mà $1-2y$ lẻ nên $1-2y$ là ước lẻ của $12$
$\Rightarrow 1-2y\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow y\in\left\{0; 1; 2; -1\right\}$
$\Rightarrow x\in\left\{12; -12; -4; 4\right\}$ (tương ứng)
\(\dfrac{x}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{y+3}\) Đk (\(y\ne-3\))⇒ \(\dfrac{2x+3}{6}\) = \(\dfrac{1}{y+3}\) ⇒ (2\(x\)+3)(y+3) = 6
Ư(6) = { -6; -3; -2; -1; 1; 2; 3; 6}
Lập bảng ta có:
2\(x\) +3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(x\) | -9/2 | -3 | -5/2 | -2 | -1 | -1/2 | 0 | \(\dfrac{3}{2}\) |
y+3 | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
y | -4 | -5 | -6 | -9 | 3 | 0 | -1 | -2 |
Từ bảng trên ta có các cặp \(x\), y nguyên thỏa mãn đề bài là:
(\(x\), y) = ( -3; -5); ( -2; -9); ( -1; 3); (0; -1);
=>\(\dfrac{xy+x-3}{3\left(y+1\right)}=\dfrac{1}{6}\)
=>2(xy+x-3)=y+1
=>2xy+2x-6-y-1=0
=>2x(y+1)-y-1=6
=>(y+1)(2x-1)=6
=>\(\left(2x-1;y+1\right)\in\left\{\left(1;6\right);\left(6;1\right);\left(-1;-6\right);\left(-6;-1\right);\left(2;3\right);\left(3;2\right);\left(-2;-3\right);\left(-3;-2\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;5\right);\left(\dfrac{7}{2};0\right);\left(-1;-7\right);\left(-\dfrac{5}{2};-1\right);\left(\dfrac{3}{2};2\right);\left(2;1\right);\left(-\dfrac{1}{2};-4\right);\left(-1;-3\right)\right\}\)
\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{y}=\dfrac{x}{3}-\dfrac{1}{2}\\\Rightarrow \dfrac{2}{y}=\dfrac{2x-3}{6}\\ \Rightarrow y\left(2x-3\right)=2\cdot6\\ \Rightarrow y\left(2x-3\right)=12\)
mà `y in ZZ;x in ZZ`
`=>y in ZZ;2x-3 in ZZ`
`=>y;2x-3` thuộc ước nguyên của `12`
`=>y;2x-3 in {+-1;+-2;+-3;+-4;+-6;+-12}`
Ta có bảng sau :
`y` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`2x-3` | `-1` | `-2` | `-3` | `-4` | `-6` | `-12` | `1` | `2` | `3` | `4` | `6` | `12` |
`x` | `1` | `1/2` | `0` | `-1/2` | `-3/2` | `-9/2` | `2` | `5/2` | `3` | `7/2` | `9/2` | `15/2` |
Vì `x;y in ZZ`
nên `(x;y)=(1;-1);(0;-3);(2;1);(3;3)`
(2,1),(1,5),