K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2023

\(y'=x^2-mx+2m=0\) (1)

Hàm nghịch biến trên một đoạn có độ dài bằng 3 khi và chỉ khi:

\(\left\{{}\begin{matrix}\Delta=m^2-8m>0\\\left|x_1-x_2\right|=3\\\end{matrix}\right.\) trong đó \(x_1;x_2\) là 2 nghiệm của (1)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>8\end{matrix}\right.\\\left(x_1+x_2\right)^2-4x_1x_2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>8\end{matrix}\right.\\m^2-8m=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-1\\m=9\end{matrix}\right.\)

16 tháng 3 2023

 (1)

Hàm nghịch biến trên một đoạn có độ dài bằng 3 khi và chỉ khi:

{Δ=�2−8�>0∣�1−�2∣=3 trong đó �1;�2 là 2 nghiệm của (1)

⇔{[�<0�>8(�1+�2)2−4�1�2=9

⇔{[�<0�>8�2−8�=9 ⇒[�=−1�=9

30 tháng 6 2019

+ Đạo hàm y’ = x2- mx+ 2m

Hàm số nghịch biến trên một đoạn có độ dài là 3 khi và chi khi  phương trình y’ =0 có 2 nghiệm x1; x2  ( chú ý hệ số a= 1> 0)  thỏa  mãn: 

x 1 - x 2 = 3 ⇔ ∆ > 0 ⇔ m 2 - 8 m > 0 ( x 1 - x 2 ) 2 = 9 ⇔ S 2 - 4 P = 9 ⇔ m > 8   h a y   m   < 0 m 2 - 8 m = 9

Chọn A.

31 tháng 12 2017

15 tháng 8 2018

 Chọn A.

Tập xác định: D = R. Ta có 

Ta không xét trường hợp y' ≤ 0, ∀ x ∈ R vì a = 1> 0.

Hàm số nghịch biến trên một đoạn có độ dài là 3 ⇔ y' = 0 có 2 nghiệm x1; x2 thỏa mãn:

26 tháng 2 2018

28 tháng 11 2017

Chọn A

Ta có .

Đặt , xét hàm , .

Hàm số nghịch biến trên khi .

,.

Xét hàm , .

Ta có , .

Lập bảng BBT trên , ta có thỏa YCBT

26 tháng 12 2017

8 tháng 8 2018

Chọn A

Phương pháp:

Tính y'.

Điều kiện để hàm số đã cho nghịch biến trên  - ∞ ; 1  

Cách giải:

Tập xác định 

Ta có 

Để hàm số nghịch biến trên khoảng  - ∞ ; 1  

16 tháng 11 2019

Đáp án B

25 tháng 8 2017

Chọn A.

Ta có: 

Hàm số đã cho nghịch biến trên [1;+)khi và chỉ khi

Đặt 

Do đó: 

Từ (1), (2) suy ra giá trị m cần tìm là: