Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(B=\left(\dfrac{x+3\sqrt{x}-3}{x-16}-\dfrac{1}{\sqrt{x}+4}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-4}\)
\(=\left(\dfrac{x+3\sqrt{x}-3-\sqrt{x}+4}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-4}\)
\(=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\cdot\dfrac{\sqrt{x}-4}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+4}\)
\(a,B=4\sqrt{x=1}-3\sqrt{x+1}+2\)\(\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
\(b,\)đưa về \(\sqrt{x+1}=4\Rightarrow x=15\)
a, Với \(x\ge-1\)
\(\Rightarrow B=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b, Ta có B = 16 hay
\(4\sqrt{x+1}=16\Leftrightarrow\sqrt{x+1}=4\)bình phương 2 vế ta được
\(\Leftrightarrow x+1=16\Leftrightarrow x=15\)
\(\sqrt{x^2-8x+16}=4-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-x\ge0\\x^2-8x+16=\left(4-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\x^2-8x+16=16-8x+x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\0x=0\left(luônđúng\right)\end{matrix}\right.\)
Vậy \(x\le4\) là nghiệm của pt
Ta có: \(\sqrt{x^2-8x+16}=4-x\)
\(\Leftrightarrow\left|x-4\right|=4-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=4-x\left(x\ge4\right)\\4-x=4-x\left(x< 4\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-4-4+x=0\\x< 4\end{matrix}\right.\)
\(\Leftrightarrow x\le4\)
20 + x = x
=> 0x = 20 ( vô lý )
đáp án bằng 0\