K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2023

A. Ta có: $\angle BAD=\angle CAD$ $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle CAD =$ $\angle ACD$ Vậy $AD$ là phân giác trong của $\angle A$ trong tam giác $ABC$ Do đó ta có $\frac{BD}{DC}=\frac{AB}{AC}$ (định lí phân giác) Mà $\angle A=\angle AHD$ (Do $H$ thuộc đường thẳng $AC$ là đường cao của tam giác $ABD$) $\angle HDA=180^{\circ}-\angle BDA=180^{\circ}-\angle B=120^{\circ}=\angle C$ Vậy $\frac{HD}{DC}=\frac{AD}{AC}=\frac{AB}{AC}=\frac{BD}{DC}$ Vậy $HD=BD$ và $\angle B=60^{\circ}=\angle HAD$ Do đó $\triangle AHD \cong \triangle ABD$ Vậy $\triangle ABC \cong \triangle AHD$ B. Ta có $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle DAC=\angle ACD$ Lại có $AD$ là phân giác trong của $\angle A$ Do đó, ta có: $\frac{BD}{DC}=\frac{AB}{AC}=\frac{BD}{DA}$ Vậy $DC=DA$, vậy $AD$ là đường trung trực của $BH$ C. Ta có $\angle AHD = \angle B = 60^{\circ}=\angle HAC$, vậy $\triangle AHD \sim \triangle ACH$ Do đó $\dfrac{HA}{HD}= \dfrac{HC}{HA}$ Vậy $HA=HC$ D. Ta có $\angle ADB=120^{\circ}-\angle BAD=120^{\circ}-\angle DAC=\angle ACD$ Do đó tam giác $ABC$ cân tại $B$, ta có $DC>AB$ (Bất đẳng thức tam giác) E. Gọi $E$ là trung điểm của $CS$ thì ta có $CE=\frac{1}{2}CS$ Mà $\angle ACB=\angle AHB=90^{\circ}$, do đó $AH//CB$, ta có $\triangle AHB \sim \triangle ACB$ Vậy $\dfrac{AB}{AC}=\dfrac{HB}{BC}$ Do đó $\dfrac{HB}{AB}=\dfrac{BC}{AC}$ Vì $HEBC$ là hình bình hành nên ta có $BC=HE$ Vậy $\dfrac{HB}{AB}=\dfrac{HE}{AC}$ Lại có $\triangle HSD \sim \triangle AHC$ Vậy $\dfrac{HS}{AC}=\dfrac{HD}{AH}$ Do đó $\dfrac{HE}{AC}=\dfrac{HD+DE}{AC}=\dfrac{HD}{AC}+\dfrac{DE}{AC}$ Vì $HA=HC$ nên ta có $HD=\frac{1}{2}AC$ Vậy $\dfrac{HE}{AC}=\dfrac{1}{2}+\dfrac{DE}{AC}$ Mà $HE=\frac{1}{2}CS=\frac{1}{4}AB$ nên $\dfrac{HE}{AB}=\dfrac{1}{4}$ Do đó $\dfrac{1}{2}+\dfrac{DE}{AC}=\dfrac{1}{4}$ Vậy $\dfrac{DE}{AC}=-\dfrac{1}{4}$ Ta có $\triangle BDS \sim \triangle ACS$ Vậy $\dfrac{BD}{AC}=\dfrac{DS}{CS}$ Mà $\angle B =\angle HAD=60^{\circ} =\angle SDC$ Nên tam giác $SDC$ cũng là tam giác đều với $SD=DC$ Vậy $\dfrac{BD}{AC}=\dfrac{DS}{CS}=\dfrac{1}{2}$ Do đó $DE=\frac{-1}{4}AC$, suy ra $DE$ song song với $AC$ Lại có $\angle AHB=90^{\circ}$ nên $BH$ vuông góc với $AC$ Do đó $AD$ là đường trung trực của $BH$ nên $DE$ cũng là đường trung trực của $BH$ Vậy ta được $A,D,E$ thẳng hàng Chúc bạn học tốt! 🙂

23 tháng 4 2023

Kẻ ��⊥�� (với �∈��).

Gọi �� là tia đối của tia ��.

Vì ���^ và ���^ là hai góc kề bù mà ���^=120∘ nên ���^=60∘ (1) 

Ta có �� là phân giác của ���^⇒���^=12���^=60∘ (2)

Từ (1) và (2) suy ra �� là tia phân giác của ���^

⇒��=�� (tính chất tia phân giác của một góc) (3)

Vì �� là phân giác của ���^ nên ��=�� (tính chất tia phân giác của một góc) (4)

Từ (3) và (4) suy ra ��=��.

7 tháng 5 2020

Bài này .....

7 tháng 5 2020

Bạn ơi, bài này sai đề r, phải là gọi H,K lần lượt lầ hc của I trên AB,BC!

5 tháng 5 2020

mink chịu nhé bn

11 tháng 6 2019

28 tháng 3 2022

undefined

tham khảo

28 tháng 3 2022

undefined

hình

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j

8 tháng 5 2015

bạn tự vẽ hình nha

trên tia đối cũa tia ad ,,vẽ tia at,trên tia at vẽ điểm n sao cho an =ak

bad =cad =120 độ chia 2 = 60 độ

suy ra góc bad =cad= nai = 6o độ (2 góc đối đỉnh)

góc bac +cai =180 độ mà bac =120 độ nên cai = 60 độ

nên góc nai bằng kai

cmd tam giac nai =kai (c.g.c) nên  góc ani=aki = 90 độ và in=ik (2ctu)

cmd tam giac dni=dei (ch.gn)suy ra in =ie 

từ 2 điều trên suy ra ik =ie

 

25 tháng 3 2022

Bn ơi cmd là viết tắt của từ j z