K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

Đại số lớp 7Đại số lớp 7

31 tháng 7 2017

ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho Đại số lớp 7

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

1 tháng 12 2016

1,X=-1 hoặc 3

2,Tìm x sao cho (x+3) và (3x-2) ko bằng 0

23 tháng 3 2020

b) \(\left|5-3x\right|< 2\)

Ta tách ra thành 2 trường hợp:

\(5-3x< 2;5-3x\ge0\)

\(-\left(5-3x\right)< 2;5-3x< 0\)

Giải 2 trường hợp và tìm x:

\(x>1;x\le\frac{5}{3}\)

\(x< \frac{7}{3};x>\frac{5}{3}\)

\(\Rightarrow x\in\text{⟨}1;\frac{7}{3}\text{⟩}\)

22 tháng 9 2018

\(|3x-1|+|-3x-10|\ge|3x-1+\left(-3x\right)-10|\)

\(|3x-1|+|-3x-10|\ge|-11|\)

\(vìAnhonhat=>A=11\)

11 tháng 10 2018

Có A = |3x - 1| + |-3x - 10|

Áp dụng tính chất |x| + |y| ≥ |x + y|, ta có:

|3x - 1| + |-3x - 10| ≥ |3x - 1 + (-3x) - 10|

=> A ≥ |-11| = 11

Dấu "=" xảy ra khi (3x - 1)(-3x - 10) ≥ 0

=> (3x - 1)(3x + 10) ≤ 0

=> 3x - 1 ≤ 0 (vì 3x - 1 < 3x + 10)

và 3x + 10 ≥ 0

=> 3x ≤ 1

và 3x ≥ -10

=> x ≤ 1/3

và x ≥ -10/3

=> -10/3 ≤ x ≤ 1/3

Vậy GTNN của A là 11 khi -10/3 ≤ x ≤ 1/3.

1 tháng 8 2018

\(|a+b|\ge0\)\(\Rightarrow GTNN|a+b|=0\)

\(|a|\ge0;|b|\ge0\Rightarrow a=0;b=0\)

\(C=3|x+2|+|3x+1|\)

\(\hept{\begin{cases}|x+2|\ge0\Rightarrow3|x+2|\ge0\\|3x+1|\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}GTNN3|x+2|=0\\GTNN|3x+1|=0\end{cases}}\Rightarrow C=0\)

\(\hept{\begin{cases}3|x+2|=0\Rightarrow|x+2|=0\Rightarrow x+2=0\Rightarrow x=-2\\|3x+1|=0\Rightarrow3x+1=0\Rightarrow3x=-1\Rightarrow x=\frac{-1}{3}\end{cases}}\)

\(\Rightarrow x\)không thể có 2 giá trị.\(\Rightarrow\orbr{\begin{cases}3|x+2|=0\\|3x+1|=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{-1}{3}\end{cases}}\)

Xét \(x=-2\)\(x=\frac{-1}{3}\):

\(x=-2\Rightarrow3|x+2|=0\Rightarrow C=|3x+1|\)

\(C1=|3x+1|\)

   \(=|3.\left(-2\right)+1|\)

   \(=|\left(-6\right)+1|\)

   \(=|-5|\)

   \(=5\)

\(x=\frac{-1}{3}\Rightarrow|3x+1|=0\Rightarrow C=3|x+2|\)

\(C2=3|x+2|\)

   \(=3|\frac{-1}{3}+2|\)

   \(=3|\frac{-1+6}{3}|\)

   \(=3|\frac{5}{3}|\)

   \(=\frac{3.5}{3}\)

   \(=5\)

\(C1=C2=5\)

\(\Rightarrow GTNNC=5\)

9 tháng 6 2018

Bài 1 :

\(3x+5=2\left(x-\frac{1}{4}\right)\)

\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)

\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)

\(\Leftrightarrow\frac{11}{2}=-x\)

\(\Leftrightarrow\frac{-11}{2}=x\)

Vậy \(x=\frac{-11}{2}\)

Bài 2:

a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)

       Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)

\(\Leftrightarrow x+\frac{19}{5}=0\)

\(\Leftrightarrow x=\frac{-19}{5}\)

\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)

\(\Leftrightarrow y+\frac{2018}{2019}=0\)

\(\Leftrightarrow y=\frac{-2018}{2019}\)

\(\Rightarrow+,\left|z-3\right|=0\)

\(\Leftrightarrow z-3=0\)

\(\Leftrightarrow z=3\)

Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)

b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)

Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)

\(\Rightarrow x\inℚ\)

\(\Rightarrow+,\left|2y+4\right|\ge0\)

\(\Rightarrow y\inℚ\)

\(\Rightarrow+,\left|z-5\right|\ge0\)

\(\Rightarrow z\inℚ\)

Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.

24 tháng 3 2020

234*(-26)+134*26