Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`1,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`2,`
`25 - x^2 = 0`
`<=> x^2 = 25 - 0`
`<=> x^2 = 25`
`<=> x^2 = (+-5)^2`
`<=> x = +-5`
Vậy,` S= {5; -5}`
`3,`
`-x^2 + 36 = 0`
`<=> -x^2 = 0 - 36`
`<=> -x^2 = -36`
`<=> x^2 = 36`
`<=> x^2 = (+-6)^2`
`<=> x = +-6`
Vậy, `S= {6; -6}`
`4,`
`4x^2 - 4 = 0`
`<=> 4x^2 = 0+4`
`<=> 4x^2 = 4`
`<=> x^2 = 4 \div 4`
`<=> x^2 = 1`
`<=> x^2 = (+-1)^2`
`<=> x = +-1`
Vậy, `S= {1; -1}`
`@` `\text {Kaizuu lv uuu}`
a, x\(^2\) - x = x - 1
\(\Leftrightarrow\) x\(^2\) - 2x + 1 = 0
\(\Leftrightarrow\) (x - 1)\(^2\) = 0
\(\Leftrightarrow\) x - 1 = 0
\(\Leftrightarrow\) x = 1
a) \(x^2-x=x-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x=1\)
b) \(\left(x^2-36\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+6=0\\x-7=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy..
c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
\(\Leftrightarrow-4x+2=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
d) \(x^2\left(x^2-4\right)-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x^2-1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=\pm1\end{matrix}\right.\)
Vậy..
\(4\left(6-x\right)+x^2-12x+36=0\)
\(24-4x+x^2-12x+36=0\)
\(x^2-16x+60=0\)
\(x^2-2x8+8^2-8^2+60=0\)
\(\left(x-8\right)^2-4=0\)
\(\left(x-8\right)^2=4\)
\(\left(x-8\right)^2=\left(\pm2\right)^2\)
\(\orbr{\begin{cases}x-8=2\Rightarrow x=10\\x-8=-2\Rightarrow x=6\end{cases}}\)
a) \(x^2-36=0\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm\sqrt{36}=\pm6\)
b) \(\left(3x-5\right)^2-\left(x+6\right)^2=0\)
\(\Leftrightarrow\left(3x-5-x-6\right)\left(3x-5+x+6\right)=0\)
\(\Leftrightarrow\left(2x-11\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{-1}{4}\end{cases}}\)
Ta có \(\left(x-4\right)^2-36=0\)
\(\Leftrightarrow\left(x-4\right)^2-6^2=0\)
\(\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{10;-2\right\}\)
\(\left(x-4\right)^2-6^2=0\)
\(\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy ...
\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)
\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)
\(\left(x-4\right)^2-36=0\)
\(\left(x-4\right)^2-6^2=0\)
\(\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-10=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
vay \(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
(x-4)2-36=0
(x-4)2-62=0
(x-4-6)(x-4+6)=0
(x-10)(x+2)=0
=>[x-10=0=>[x=0
(x+2=0=>[x=-2
Vay [x=10
[x=-2
`x-4` mũ `2=36`
TH1
`x-4=6`
`x=10`
TH2
`x-4=-6`
`x=-2`
Vậy `x=10` hoặc `x=-2`
(x - 4)2 - 36 = 0
(x - 4)2 = 0 + 36
(x - 4)2 = 36
(x - 4)2 = 62 = (-6)2
TH1 : (x - 4)2 = 62
x - 4 = 6
x = 6 + 4
x = 10
TH2 : (x - 4)2 = (-6)2
x - 4 = -6
x = -6 + 4
x = -2
vậy x ϵ {-2;10}