Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{1}{6.25}+\frac{1}{7.30}+...+\frac{1}{8.35}+\frac{1}{100.495}\)
\(=\frac{1}{6.\left(5.5\right)}+\frac{1}{7.\left(5.6\right)}+...+\frac{1}{8.\left(5.7\right)}+\frac{1}{100.\left(5.99\right)}\)
\(=\frac{1}{5}\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)
\(=\frac{1}{5}\left[\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+...+\left(\frac{1}{99}-\frac{1}{100}\right)\right]\)
\(=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)\)
Mà \(\frac{1}{5}-\frac{1}{100}< \frac{1}{5}\)nên \(A=\frac{1}{5}\left(\frac{1}{5}-\frac{1}{100}\right)< \frac{1}{5}.\frac{1}{5}=\frac{1}{25}.\)
Vậy \(A< \frac{1}{25}.\)
100-5=95 phân số
(1/100+1/6):2=53/600
(495-25):5+1=95 số
(495+5)x95:2=23750
53/600x23750=25175/12
Bài làm:
(2019-2018+2017-.....-2) x (100 -25x2x2)
=(2019-2018+2017-.....-2) x (100 -25x4)
=(2019-2018+2017-.....-2) x 0
=0
*like phát
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x(100-25x4)
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x(100-100)
=(2019 – 2018 + 2017 – 2016 + 2015 + ....... – 4 + 3 – 2) x0
=0
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
A = 1/4 +1/9 + 1/16 + 1/25 + 1/36
= ( 1/4 + 1/16 ) + ( 1/9 + 1/36) + 1/25
= 5/16 + 5/36 + 1/25
= 65/144 + 1/25
= 1769/3600
=> 1769/3600 < 5/6 (hay 1769/3600 < 3000/3600 -quyđồng-)
Vậy A< 5/6
Đúng nhé, tk cho mjk với-số to thiệt nhưng đúng mà-
ko b
Ta có:
\(\dfrac{1}{16}+\dfrac{1}{25}+\dfrac{1}{36}+...+\dfrac{1}{100}+\dfrac{1}{121}\\ =\dfrac{1}{4\times4}+\dfrac{1}{5\times5}+\dfrac{1}{6\times6}+...+\dfrac{1}{10\times10}+\dfrac{1}{11\times11}\\ < \dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+...+\dfrac{1}{10\times11}+\dfrac{1}{11\times12}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\\ =\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)
Do \(\dfrac{1}{16}+\dfrac{1}{25}+\dfrac{1}{36}+...+\dfrac{1}{100}+\dfrac{1}{121}< \dfrac{1}{6}\)
\(\Rightarrow A< 2018+\dfrac{1}{6}< 2018+1=2019\)
Vậy \(A< 2019\)