K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2022

`\sqrt{x+12+6\sqrt{x+3}}-\sqrt{x+12-6\sqrt{x+3}}`   `ĐK: x >= -3`

`=\sqrt{(\sqrt{x+3})^2+2.\sqrt{x+2}.3+3^2}-\sqrt{(\sqrt{x+3})^2-2.\sqrt{x+2}.3+3^2}`

`=\sqrt{(\sqrt{x+3}+3)^2}-\sqrt{(\sqrt{x+3}-3)^2}`

`=|\sqrt{x+3}+3|-|\sqrt{x+3}-3|`

`=\sqrt{x+3}+3-|\sqrt{x+3}-3|`

`@` Với `\sqrt{x+3}-3 >= 0<=>\sqrt{x+3} >= 3<=>x+3 >= 9<=>x >= 6` (t/m)

    `=>\sqrt{x+3}+3-|\sqrt{x+3}-3|=\sqrt{x+3}+3-\sqrt{x+3}+3=6`

`@` Với `\sqrt{x+3}-3 < 0<=>\sqrt{x+3} < 3<=>x+3 < 9<=>x < 6`

                                    Kết hợp đk `x >= -3 =>-3 <= x < 6`

   `=>\sqrt{x+3}+3-|\sqrt{x+3}-3|=\sqrt{x+3}+3-3+\sqrt{x+3}=2\sqrt{x+3}`

\(\sqrt{x+12+6\sqrt{x+3}}-\sqrt{x+12-6\sqrt{x+3}}\) \(\left(ĐKXĐ:x\ge-3\right)\)

\(=\sqrt{\left(x+3\right)+2\sqrt{x+3}.3+9}-\sqrt{\left(x+3\right)-2\sqrt{x+3}.3+9}\)

\(=\sqrt{\left[\left(\sqrt{x}+3\right)+3\right]^2}-\sqrt{\left[\left(\sqrt{x}+3\right)-3\right]^2}\)

\(=|\left(\sqrt{x}+3\right)+3|-|\left(\sqrt{x}+3\right)-3|\)

\(=\left(\sqrt{x}+3\right)+3-\left(\sqrt{x}+3\right)+3=6\) ( Với \(x\ge-3\) ) 

 

NV
6 tháng 8 2021

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

27 tháng 10 2020

Để \(\sqrt{x}\) xác định

 \(\Leftrightarrow x\ge0\)

\(\Leftrightarrow-7x\le0\)

\(\Rightarrow\sqrt{-7x}\)không tồn tại 

\(\Leftrightarrow\frac{8x}{4x\sqrt{x-8x}}\)không tồn tại

=> A không tồn tại 

25 tháng 8 2021

đề bài là gj bạn ơi

a: \(x+\sqrt{x}-2=\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\)

b: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)

c: \(x-3\sqrt{x}+2=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)

d: \(x-5\sqrt{x}-6=\left(\sqrt{x}-6\right)\left(\sqrt{x}+1\right)\)

e: \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

f: \(x+7\sqrt{x}+12=\left(\sqrt{x}+4\right)\cdot\left(\sqrt{x}+3\right)\)

g: \(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

ĐKXĐ: $x\geq 0; y\geq 1$

PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:

$\sqrt{x}-2=\sqrt{y-1}-3=0$

$\Leftrightarrow x=4; y=10$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

b.

ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$

$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$

$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$