Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4S=1+24+342+....+2014420134S=1+24+342+....+201442013
4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)
3S=1+(24−14)+(342−242)+......+(201442013−201342013)−2014420143S=1+(24−14)+(342−242)+......+(201442013−201342013)−201442014
3S=1+14+142+143+.....+142013−2014420143S=1+14+142+143+.....+142013−201442014
đặt A=1+14+142+143+....+142023A=1+14+142+143+....+142023
4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)
3A=4−1420233A=4−142023
A=43−13.42023A=43−13.42023
⇒3S=43−13.42023−201442024⇒3S=43−13.42023−201442024
⇒S=49−19.42023−20143.42024⇒S=49−19.42023−20143.42024
do 49<48=1249<48=12
⇒S=49−19.42023−20143.42024<48=12(đpcm)
=>4.S=1+2/4 +3/42+....+2014/42013
=>3.S=1+1/4+1/42+...+1/42013-2014/42014
=>12.S=4+1+1/4+......+1/42012-2014/42013
=>9.S=4-2014/42013-1/42013+2014/42014
=>9.S=4-(2015/42013-2014/42014) mà 2015/42013-2014/42014>0
=>9.S<4
=>S<4/9
=S<4/8
=>S<1/2
=>S<0,5
Vậy S<0,5 (ĐPCM)
Xét \(4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+\dfrac{4}{4^3}+...+\dfrac{2014}{4^{2013}}\)
=> \(3S=4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2014}{4^{2013}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+...+\dfrac{2014}{4^{2014}}\right)\)
=> \(3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}-\dfrac{2014}{4^{2014}}< 1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\)
Đặt \(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\)
=> \(4A=4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{2012}}\)
=> \(3A=4A-A=\left(4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{2012}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\right)\)
=> \(3A=4-\dfrac{1}{4^{2013}}< 4\)
=> \(A< \dfrac{4}{3}\)
=> \(3S< \dfrac{4}{3}\)
=> \(S< \dfrac{4}{9}< \dfrac{1}{2}\)
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2014}{4^{2013}}\)
\(4S-S=3S=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2014}{4^{2013}}-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2014}{4^{2014}}\right)\)
\(3S=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+......+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)
\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+.....+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
đặt \(A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2023}}\)
\(4A-A=4+1+\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{2022}}-\left(1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2023}}\right)\)
\(3A=4-\frac{1}{4^{2023}}\)
\(A=\frac{4}{3}-\frac{1}{3.4^{2023}}\)
\(\Rightarrow3S=\frac{4}{3}-\frac{1}{3.4^{2023}}-\frac{2014}{4^{2024}}\)
\(\Rightarrow S=\frac{4}{9}-\frac{1}{9.4^{2023}}-\frac{2014}{3.4^{2024}}\)
do \(\frac{4}{9}< \frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow S=\frac{4}{9}-\frac{1}{9.4^{2023}}-\frac{2014}{3.4^{2024}}< \frac{4}{8}=\frac{1}{2}\left(đpcm\right)\)
=> \(4.S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)
=> 4.S - S = \(\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\right)\)
=> 3.S = \(=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+\left(\frac{4}{4^3}-\frac{3}{4^3}\right)+...+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)
=> 3.S = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
Tính A= \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)
=> \(4.A=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)
=> 4.A - A = \(4-\frac{1}{4^{2013}}\)=> A= \(\frac{4}{3}-\frac{1}{3.4^{2013}}\)
=> 3.S = \(\frac{4}{3}-\frac{1}{3.4^{2013}}-\frac{2014}{4^{2014}}\) => S = \(\frac{4}{9}-\frac{1}{9.4^{2013}}-\frac{2014}{4^{2014}}
trai dâm kb nha