Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)
\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\)
\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\)
Bài 1:
a: \(A=-\left|x-\dfrac{4}{9}\right|+\dfrac{7}{33}\le\dfrac{7}{33}\forall x\)
Dấu '=' xảy ra khi x=4/9
b: \(B=-\left|x+\dfrac{11}{9}\right|+\dfrac{101}{90}\le\dfrac{101}{90}\forall x\)
Dấu '=' xảy ra khi x=-11/9
Bài 2:
=>2x-8/33=0 và 3y+7/45=0
=>2x=8/33 và 3y=-7/45
=>x=8/66=4/33 và y=-7/135
a, 3 - 2 | 5x - 4 | = -11
2|5x - 4| = 14
|5x - 4| = 7
Th1: 5x -4 =7
5x = 11
x= 11/5
Th2:
5x -4 =-7
5x = -3
x= -3/5
a) => 2/5x-4/=14
=> /5x-4/=7
=> 5x-4=7 hoac 5x-4=-7
x=11/5 x=-3/5
Ta có: \(2x^3+5=21\)
\(2x^3=16\)
\(x^3=8\)
\(\Rightarrow x=2\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25}{9+16}=\frac{z+9-x-16}{25-9}=\frac{x+y-9}{25}=\frac{z-x-7}{16}\)
Mà \(x=2\)
\(\Rightarrow\frac{y+2-9}{25}=\frac{z-2-7}{16}=\frac{y-7}{25}=\frac{z-9}{16}=\frac{2+16}{9}=2\)(cái này từ dãy tỉ số trên thay x vào bạn nhé!)
\(\hept{\begin{cases}y-7=2\cdot25=50\\z-9=2\cdot16=32\end{cases}}\)(nhân chéo bạn nhé!)
\(\Leftrightarrow\hept{\begin{cases}y=50+7=57\\z=32+9=41\end{cases}}\)(2)
Thay (1) và (2) vào A, ta được:
\(A=2+57+41+2017\)
\(A=2117\)
Vậy A=2117
a) \(\left|2x-1\right|+\frac{1}{3}=0\)
\(\Leftrightarrow\left|2x-1\right|=-\frac{1}{3}\)
=> vô lý
=> PT vô nghiệm
b) \(\left|x+2\right|+\left|x-3\right|=0\)
\(\Leftrightarrow\left|x+2\right|=-\left|x-3\right|\)
Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\-\left|x-3\right|\le0\end{cases}\left(\forall x\right)}\) nên dấu "=" xảy ra khi:
\(\left|x+2\right|=-\left|x-3\right|=0\Rightarrow\hept{\begin{cases}x=-2\\x=3\end{cases}}\) (vô lý)
=> PT vô nghiệm
a: =>2x>-6
hay x>-3
e: =>(5-x)/x<0
=>0<x<5
h: \(\Leftrightarrow\dfrac{x+5-x-3}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
hay x<-3
g: \(\Leftrightarrow\dfrac{2x+7}{x+4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{7}{2}\\x< -4\end{matrix}\right.\)