Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)
\(S=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Vì \(\frac{a}{b}+\frac{b}{a}\ge2;\frac{c}{b}+\frac{b}{c}\ge2;\frac{a}{c}+\frac{c}{a}\ge2\) (bn tự c/m nhé)
=>S \(\ge\) 2+2+2=6
=>GTNN của S là 6
a) \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)
\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Tổng của hai phân số dương nghịch đảo bao giờ cũng lớn hơn hoặc bằng 2 nên :
\(\frac{a}{c}+\frac{c}{a}\ge2\) ; \(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{b}{a}+\frac{a}{b}\ge2\)
\(\Rightarrow S\ge2+2+2=6\)
b) \(S\ge6\) nên GTNN của S là 6 ( \(\Leftrightarrow\) a = b =c )
a] Ta có : \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\); \(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
\(\Rightarrow S\ge2+2+2=6\)
b] Ta có \(S=6\Leftrightarrow a=b=c\)
GTNN của S =6
a)
Cách 1: Do \(a,b,c\inℕ^∗\)nên \(a,b,c\ge1\). Do đó:
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
Cách 2 (không thông dụng lắm, mình tự nghĩ ra)
Dự đoán: \(a=b=c\)
Do đó: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2a}{a}+\frac{2a}{a}+\frac{2a}{a}=\frac{a\left(2+2+2\right)}{a}=6\) (do a = b = c nên ta thế b, c = a) (đpcm)
b) Từ kết quả a) ta dễ thấy GTNN của S là 6
S=-(a-b-c)+(-c+b+a)-(a+b)
=-a+b+c-c+b+a-a-b
=-a+b+c+(-c)+b+a+(-a)+(-b)
=[(-a)+a+(-a)]+[b+b+(-b)]+[c+(-c)]
=-a+b
vì a>b nên |S|=a-b
vậy...
k mình nha. kb nữa...^_^...