Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)
b.
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)
c.
Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
Ta có:
\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)
a) Tại x=16 thì A = \(\dfrac{\sqrt{16}-1}{\sqrt{16}+2}=\dfrac{4-1}{4+2}=\dfrac{1}{2}\)
b) B = \(\dfrac{\sqrt{x}+1+\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\div\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
= \(\dfrac{\sqrt{x}+1+x-\sqrt{x}}{x+\sqrt{x}}\times\dfrac{x+\sqrt{x}}{\sqrt{x}}\)
= \(\dfrac{x+1}{\sqrt{x}}\)
B = \(\dfrac{x+1}{\sqrt{x}}\)= 2
⇒ x + 1 = 2\(\sqrt{x}\)
⇒ x - \(2\sqrt{x}\) +1 = 0
⇒ \(\left(\sqrt{x}-1\right)^2\) = 0
⇒ \(\sqrt{x}-1=0\)
⇒ x = 1
\(A=\left(\dfrac{2x+\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}-\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+x+\sqrt{x}\right)}\right)\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
\(=\left(\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}-\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
\(=\dfrac{2x\sqrt{x}+2x+2\sqrt{x}-x-\sqrt{x}-1-2x\sqrt{x}-x+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
\(=\dfrac{2\sqrt{x}-1}{x+\sqrt{x}+1}\cdot\dfrac{\sqrt{x}}{2\sqrt{x}-1}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
a, ĐKXĐ: \(x\ge0,\)
b, ĐKXĐ: \(x\ge0,x\ne1\)
c, ĐKXĐ: \(x\ge0,x\ne4\)
d,ĐKXĐ:\(x\ge0,x\ne9,x\ne4\)
e,ĐKXĐ:\(x\ge0,x\ne1,x\ne4\)
\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)
\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)
\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)
\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)
a: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)
b: Để P=2 thì \(x-\sqrt{x}-2=0\)
=>\(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)
hay x=4