K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Cách 1 : Dựa vào lập phương của 1 tổng

Cách 2 : Nhân đa thức với đa thức

15 tháng 4 2019

(a + b)(a + b) = a(a + b) + b(a + b)

= a2 + ab + ba + b2

= a2 + 2ab + b2

4 tháng 12 2019

AH // BK (cùng ⊥ b) và AB // HK ⇒ tứ giác ABKH là hình bình hành

⇒ AH = BK = h

18 tháng 6 2017

Nếu a hoặc b là số chẵn hoặc cả a;b là số chẵn => ab(a+b) là số chẵn

Nếu a;b là số lẻ => a+b chẵn => ab(a+b) chẵn

Vậy ab(a+b) là số chẵn với a;b là các số tự nhiên bất kì

18 tháng 6 2017

Giả sử : a là số chẵn, b là số lẻ

Ta có : a . b = chẵn . lẻ = chẵn → Cho dù a + b là số nào đi nữa thì ab ( a+ b ) vẫn là số chẵn ( vì ab = số chẵn )

Giả sử : a là số lẻ, b là số lẻ 

Ta có : ( a + b ) = lẻ + lẻ = chẵn → Cho dù ab là số nào đi nữa thì ab ( a+ b ) vẫn là số chẵn ( vì ( a + b ) = số chẵn )

18 tháng 6 2017

 Bonking thiếu nha bạn 

Còn 2 trường hợp nữa 

Nếu a là số lẻ b là số chẵn 

Thì ab là số chẵn => ab(a + b) cũng là số chẵn

Nếu a là số chẵn , b là số lẻ thì mk chịu 

3:

Gọi hai số cần tìm lần lượt là a,b

Theo đề, ta có: a=2b và a-b=22

=>b=22; a=44

19 tháng 4 2022

Ta có:

\(\left(a-1\right)^2\ge0;\forall a\) (1)

\(\left(b-1\right)^2\ge0;\forall b\) (2)

\(\left(c-1\right)^2\ge0;\forall c\) (3)

Cộng từng vế (1);(2);(3) ta được:

\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)

\(\Leftrightarrow a^2+b^2+c^2-2\left(a+b+c\right)+3\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\) ( đfcm )

19 tháng 4 2022

Ta có:

(a−1)2≥0;∀a(a−1)2≥0;∀a (1)

(b−1)2≥0;∀b(b−1)2≥0;∀b (2)

(c−1)2≥0;∀c(c−1)2≥0;∀c (3)

Cộng từng vế (1);(2);(3) ta được:

(a−1)2+(b−1)2+(c−1)2≥0(a−1)2+(b−1)2+(c−1)2≥0

⇔a2−2a+1+b2−2b+1+c2−2c+1≥0⇔a2−2a+1+b2−2b+1+c2−2c+1≥0

⇔a2+b2+c2−2(a+b+c)+3≥0⇔a2+b2+c2−2(a+b+c)+3≥0

⇔a2+b2+c2+3≥2(a+b+c)⇔a2+b2+c2+3≥2(a+b+c) ( đpcm ).

9 tháng 11 2016

Giả sử BĐT trên đúng
Ta có \(\frac{a^2}{x}+\frac{b^2}{y}>=\frac{\left(a+b\right)^2}{x+y}\\ \Leftrightarrow\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\\ \Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge\left(a+b\right)^2xy\)

Bạn nhân ra rồi thu gọn tất cả các hạng tử về vế trái rồi được hàng đẳng thức:

\(\left(ay-bx\right)^2\ge0\) (luôn đúng)
Vậy BĐT đúng