K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2016

\(\left(3\frac{1}{2}-x\right).1\frac{1}{4}=-1\frac{1}{20}\)
\(\left(3\frac{1}{2}-x\right).\frac{5}{4}=\frac{-21}{20}\)
(\(\frac{7}{2}\)-x)        =\(\frac{-21}{20}:\frac{5}{4}\)
\(\frac{7}{2}\)-x           =\(\frac{-21}{20}.\frac{4}{5}\)
\(\frac{7}{2}\)-x        =\(\frac{-21}{25}\)
-x             =\(\frac{-42}{50}-\frac{175}{50}\)
-x             -\(\frac{-217}{50}\)
x=\(\frac{217}{50}\)=4\(\frac{17}{50}\)

14 tháng 4 2016

(3 1/2 - x). 1 1/4 = -1 1/20

(7/2 - x). 5/4 = -21/20

7/2 - x = -21/20 : 5/4

7/2 - x = -21/25

x= 7/2-(-21/25)

x= 217/50

19 tháng 4 2016

Sai Đề

19 tháng 4 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)..................\left(1-\frac{1}{20}\right)\)

=\(\frac{1}{2}.\frac{2}{3}.............\frac{19}{20}\) 

=\(\frac{1.2.3..............19}{2.3.4..............20}\) 

=\(\frac{1}{20}\)

 

Ta có:

\(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\\...\\\left|x+\frac{1}{110}\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\ge0\)

\(\Rightarrow11x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\)

=\(x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}\)

\(=10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)

Đặt \(A=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\)

\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{11-10}{10.11}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(\Rightarrow A=1-\frac{1}{11}=\frac{10}{11}\)

\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=10x+A=10x+\frac{10}{11}=11x\)

\(\Rightarrow\frac{10}{11}=11x-10x\)

\(\Rightarrow x=\frac{10}{11}\)

15 tháng 4 2016

Ta đã biết: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

Ta có: \(A=1+\frac{1}{2}.\left(\frac{2.3}{2}\right)+\frac{1}{3}.\left(\frac{3.4}{2}\right)+...+\frac{1}{20}.\left(\frac{20.21}{2}\right)\)

\(A=1+\frac{3}{2}+\frac{4}{2}+....+\frac{21}{2}\)

\(A=\frac{1}{2}.\left(2+3+....+21\right)\)

Tổng trong ngoặc có:21-2+2=20 (số hạng)

\(=>A=\frac{1}{2}.\left(\frac{\left(21+2\right).20}{2}\right)=\frac{1}{2}.230=115\)

Vậy..........

15 tháng 4 2016

Nể Hoàng Phúc giải nhanh thế !!!!

22 tháng 4 2016

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+...+20\right)\)

\(=1+1,5+2+2,5+...+10+10,5\)

Dãy số trên có số các số hạng là:

\(\frac{10,5-1}{0,5}+1=20\)(số)

\(\Rightarrow B=\frac{20.\left(1+10,5\right)}{2}=115\)

Vậy B=115

4 tháng 10 2015

đk: \(\begin{cases}x+2\ne0\\4-x>0\\6+x>0\end{cases}\)

ta có \(3\log_{\frac{1}{4}}\left(x+2\right)-3=3\log_{\frac{1}{4}}\left(4-x\right)+3\log_{\frac{1}{4}}\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right)-\log_{\frac{1}{4}}\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right).\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\frac{x+2}{4}=\left(4-x\right)\left(6+x\right)\)

giải pt tìm ra x

đối chiếu với đk của bài ta suy ra đc nghiệm của pt

30 tháng 3 2016

=>-2x/3+1/6=2x/3-1/3
=>-4x+1=4x-2
=>-8x=-3
=>x=3/8

30 tháng 3 2016

Hỏi j thế

26 tháng 3 2016

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2010}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2009}{2010}\)

\(=\frac{1.2.3.4.5....2008.2009}{2.3.4....2009.2010}\)

\(=\frac{1}{2010}\)

27 tháng 3 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2010}\right)\)

\(=\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{2010}{2010}-\frac{1}{2010}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2009}{2010}=\frac{1.2.3....2009}{2.3.4....2010}=\frac{1}{2010}\)

23 tháng 10 2015

ta có

\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)

Đặt =\(t=\log_{\frac{1}{2}}x\) ta có

\(y=\frac{1}{3}t^3+t^2-3t+1\) 

với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)

thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]

ta tính \(y'=t^2+2t-3\) 

ta tính y'=0 suy ra t=1(loại);t=-3(loại)

ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)

vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\) 

hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)