K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

đặt \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}\)

\(2S=1+\frac{1}{2}+...+\frac{1}{2^{2017}}\)

\(2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{2017}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}\right)\)

\(S=1-\frac{1}{2^{2018}}\)

4 tháng 5 2018

1) Đặt dãy trên là \(A\)

Theo bài ra ta có :

\(A=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)

2) \(A=\frac{5^{2018}-2017+1}{5^{2018}-2017}=\frac{5^{2018}-2017}{5^{2018}-2017}+\frac{1}{5^{2018}-2017}=1+\frac{1}{5^{2018}-2017}\)( 1 )

\(B=\frac{5^{2018}-2019+1}{5^{2018}-2019}=\frac{5^{2018}-2019}{5^{2018}-2019}+\frac{1}{5^{2018}-2019}=1+\frac{1}{5^{2018}-2019}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(A=1+\frac{1}{5^{2018}-2017}< 1+\frac{1}{5^{2018}-2019}=B\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

4 tháng 5 2018

1) Ta có B =

 \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)\(\frac{99}{100}\)

=> B < 1 ( chứ không phải \(\frac{1}{2}\) bạn nhé)

Sai thì thôi chứ mk chỉ làm rờ thôi

2. So sánh A và B

b) A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{20}\right)\)

    A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{20}{20}-\frac{1}{20}\right)\)

    A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{18}{19}.\frac{19}{20}\)

    A = \(\frac{1.2.3.....19}{2.3.4.....20}\)

    A = \(\frac{1}{20}\)

  Mà \(\frac{1}{20}\)>   \(\frac{1}{21}\)

=> A > B

6 tháng 5 2018

Sửa lại câu 1b, \(\frac{1}{2017.2019}\)

27 tháng 7 2018

Ta có : \(\frac{1}{1-\frac{1}{1-\frac{1}{2}}}=\frac{1}{1-\frac{1}{\frac{1}{2}}}=\frac{1}{1-2}=-1.\)

\(\frac{1}{1+\frac{1}{1+\frac{1}{2}}}=\frac{1}{1+\frac{1}{\frac{3}{2}}}=\frac{1}{1+\frac{2}{3}}=\frac{1}{\frac{5}{3}}=\frac{3}{5}\)

Vậy : \(\frac{1}{1-\frac{1}{1-\frac{1}{2}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}=-1+\frac{5}{3}=\frac{-2}{5}\)

27 tháng 7 2018

\(\frac{1}{1-\frac{1}{1-\frac{1}{2}}}+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}\)

\(=\frac{1}{1-2}+\frac{1}{1+2}=-1+\frac{1}{3}=-\frac{2}{3}\)

16 tháng 4 2018

Bài 1:

a) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) ta có: \(A=1+2+2^2+2^3+...+2^{2018}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2019}\)

\(\Rightarrow2A-A=2^{2019}-2\)

\(\Rightarrow A=2^{2019}-2\)

Chúc bn học tốt !!!!!

16 tháng 4 2018

a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

17 tháng 4 2017

Mình giúp bạn nha!

A = 2017/1 + 2017/2 + 2017/3 + . . . + 2017/2018   /   2017/1 + 2016/2 + 2015/3 + . . .+ 1/2017

    = 2017 . ( 1 + 1/2 + 1/3 + . . . +1/2018 )   /   ( 2017 . 2016 . 2015 . . . 1) . ( 1 + 1/2 + 1/3 +. . . + 1/2017 )

    = 1/2016 . 2015 . 2014. . . 1

k mình nha

17 tháng 4 2017

Dễ mà, bạn hãy suy nghĩ đi

27 tháng 9 2020

\(B=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(1+3\right).3}{2}+...+\frac{1}{2018}.\frac{\left(1+2018\right).2018}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{2019}{2}=1+\frac{3+4+...+2019}{2}=1+\frac{\left(3+2019\right)2017}{2}=2039188\)

27 tháng 9 2020

thank you bạn

12 tháng 5 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)

\(\Leftrightarrow x+2=41\)

\(\Leftrightarrow x=41-2\)

\(\Leftrightarrow x=39\)

5 tháng 4 2020

???????????????????????????????????????????????????????

\(B1\)

\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{37}-\frac{1}{38}-\frac{1}{39}\)

\(=1-\frac{1}{39}\)

\(=\frac{38}{39}\)

\(B2\)

\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+.....+\frac{1}{99\cdot100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}\)

\(=\frac{25}{100}-\frac{1}{100}\)

\(=\frac{24}{100}\)

\(=\frac{6}{25}\)

30 tháng 4 2018

Bài 1 :

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)

\(=\frac{1}{1.2}-\frac{1}{38.39}\)

\(=\frac{370}{741}\)