Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi a.c.b lan luot la 3 ti le voi 1.2.3
a/1=b/2=c/3 va a+b+c=180 ap dg tih chat day ti so bag nhau ta co a+b+c/1+2+3=180/6= 20 suy ra : a/1=20 =1.20=20 , b/2=20=40, c/3=20=60 vay suy ra : 20,40,60 la A.b.c can tim sory mjh dug may tih nen ko cah dc sỏy nha
đề sai bạn ơi, các góc tỉ lệ chứ cạnh cđg
theo đề bài ta có :
A/3 = B/4 = C/5
=> A+B+C/3+4+5 = A/3=B/4=C/5
A+B+C = 180
=> 180/12 = A/3 = B/4 = C/5
=> 15 = A/3 = B/4 = C/5
=> A = 45 ; B = 60; C = 75
Gọi 3k, 4k, 5k lần lượt là các cạnh của tam giác ABC \(\left(k>0;k\inℝ\right)\)
Áp dụng định lí pythagore đảo vào tam giác ABC:
Vì \(\left(5k\right)^2=25k^2=9k^2+16k^2=\left(3k\right)^2+\left(4k\right)^2\)
Suy ra: tam giác ABC là tam giác vuông có độ dài cạnh huyền là 5k, độ dài 2 cạnh góc vuông là 3k, 4k
Với tam giác ABC vuông tại A, thì: \(\widehat{A}=90^0\)
Giả sử: AB = 3k ; AC = 4k
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^0\)
Vì tổng các góc \(\widehat{A}=90^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{B}=90^0-53^0=37^0\)
Vậy 3 góc trong tam giác có số đo là: \(90^0;37^0;53^0\)
HỌC TỐT!
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30^0\) (định lý tổng 3 góc trong tam giác)
\(\Rightarrow \widehat{A}=30^0; \widehat{B}=2.30^0=60^0; \widehat{C}=3.30^0=90^0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180}{6}=30\)
Do đó: a=30; b=60; c=90
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Theo đề bài ta có: \(\frac{A}{1}\); \(\frac{B}{2}\); \(\frac{C}{3}\)và A+B+C=180
\(\frac{A}{1}+\frac{B}{2}+\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\frac{A}{1}=30\Rightarrow A=30\cdot1=30^0\)
\(\Rightarrow\frac{B}{2}=30\Rightarrow B=30\cdot2=60^0\)
\(\Rightarrow\frac{C}{3}=30\Rightarrow C=30\cdot3=90^0\)
Gọi số đo 3 góc của tam giác lần lượt là: x,y,z và x,y,z phải là số dương.
Theo đề bài ta có
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) và x+y+z=180
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
- \(\frac{x}{1}=30.1=30\)
- \(\frac{x}{2}=30.2=60\)
- \(\frac{x}{3}=30.3=90\)
Vậy số đo các góc của tam giác lần lượt là: 30,60,90.
mk nhé bạn ^...^ ^_^
Tổng số đó của 1 tam giác là 180o
Gọi số đo của các góc A,B,C lần lượt là x,y,z
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
x/1 = 30 => x = 30
y/2 = 30 => y = 60
z/3 = 30 => z = 90
Vậy  = 30o ; B = 60o ; C = 90o
ta có góc A : góc B : góc C=1:2:3
suy ra gócA/1=gócB/2=gócC/3=180/6=30 độ
=>góc A=30.1=30 độ
góc B=30.2=60 độ
góc C= 30.3=90 độ