Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc dtsbn:
\(2\widehat{A}=3\widehat{B};\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2};\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\\ \Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+4}=\dfrac{180^0}{9}=20^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=60^0\\\widehat{B}=40^0\\\widehat{C}=80^0\end{matrix}\right.\)
đề sai bạn ơi, các góc tỉ lệ chứ cạnh cđg
theo đề bài ta có :
A/3 = B/4 = C/5
=> A+B+C/3+4+5 = A/3=B/4=C/5
A+B+C = 180
=> 180/12 = A/3 = B/4 = C/5
=> 15 = A/3 = B/4 = C/5
=> A = 45 ; B = 60; C = 75
Gọi 3k, 4k, 5k lần lượt là các cạnh của tam giác ABC \(\left(k>0;k\inℝ\right)\)
Áp dụng định lí pythagore đảo vào tam giác ABC:
Vì \(\left(5k\right)^2=25k^2=9k^2+16k^2=\left(3k\right)^2+\left(4k\right)^2\)
Suy ra: tam giác ABC là tam giác vuông có độ dài cạnh huyền là 5k, độ dài 2 cạnh góc vuông là 3k, 4k
Với tam giác ABC vuông tại A, thì: \(\widehat{A}=90^0\)
Giả sử: AB = 3k ; AC = 4k
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^0\)
Vì tổng các góc \(\widehat{A}=90^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{B}=90^0-53^0=37^0\)
Vậy 3 góc trong tam giác có số đo là: \(90^0;37^0;53^0\)
HỌC TỐT!
ta có góc A : góc B : góc C=1:2:3
suy ra gócA/1=gócB/2=gócC/3=180/6=30 độ
=>góc A=30.1=30 độ
góc B=30.2=60 độ
góc C= 30.3=90 độ
tìm bội chung nhỏ nhất (3,4,6)=12
Ta có A/4=A/3=A/2 và A+B+C=180 độ
Xét......
Ta có:A/4=B/3=C/2=A/4+B/3+C/2=?
Ta có các số đo tam giác đó tỉ lệ nghịch với 3, 4, 6
\(\Rightarrow\frac{\widehat{A}}{\frac{1}{3}}=\widehat{\frac{B}{\frac{1}{4}}}=\widehat{\frac{C}{\frac{1}{6}}}\)
\(ADTCDTSBN:\widehat{\frac{A}{\frac{1}{3}}}=\widehat{\frac{B}{\frac{1}{4}}}=\widehat{\frac{C}{\frac{1}{6}}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{180^o}{\frac{3}{4}}=240\)
\(\Rightarrow\widehat{\frac{A}{\frac{1}{3}}}=240\Rightarrow\widehat{A}=80^o\)
\(\widehat{\frac{B}{\frac{1}{4}}}=240\Rightarrow\widehat{B}=60^o\)
\(\widehat{\frac{C}{\frac{1}{6}}}=240\Rightarrow\widehat{C}=40^o\)
Vậy \(\widehat{A}=80^o;\widehat{B}=60^o;\widehat{C}=40^o\)
Tổng các góc trong tam giác là 180 độ
Gọi số đo các góc lần lượt là x,y,z
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
=> x=90; y=60; z=30
Tam giác ABC vuông tại A
D trung điểm AC; DM vuông góc BC => M trung điểm BC
=> AM trung tuyến thuộc cạnh huyền
=> Góc ABM = góc BAM = 60 độ
=> Tam giác ABM đều
gọi x,y,z là số đo các góc trong tam giác ABC tỉ lệ nghịch với 6; 10; 15.
theo đề cho ta có:
6x=10y=15z hay 6x30=10y30=15z30⇒x5=y3=z2
và x+y+z= 180
x5=y3=z2=x+y+z5+3+2=18010=18
x=18.5=90
y=18.3=54
z=18.2=36
vậy số đo các góc trong tam giác ABC lần lượt là 90;54;36