K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1

Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1

15 tháng 11 2021
Bạn nhìn nhầm đề rồi kẻ bí ẩn
1 tháng 7 2015

\(A=n^3-n+6n^2-24-18n=n\left(n^2-1\right)+6\left(n^2-4\right)-18n=n\left(n-1\right)\left(n+1\right)+6\left(n^2-4\right)-18n\)

ta thấy n(n-1)(n+1) là tích của 3 số tự nhiên ltiếp => trong đó có một số chia hết cho 2, chia hết cho 3 => tích chia hết cho 2.3=6

6(n^2-4) hiển nhiên chia hết cho 6

18n=6n.3 hiển nhiên chia hết cho 6 => A chia hết cho 6

5 tháng 8 2016

6n + 333...3 (n chữ số 3)

= 9n + 333...3 (n chữ số 3) - 3n

= 9n + 3.(111...1 - n)

           n chữ số 1

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà số 111...1 (n chữ số 1) có tổng các chữ số là n

=> 111...1 - n chia hết cho 3

   n chữ số 1

=> 3.(111...1 - n) chia hết cho 9

      n chữ số 1

Mà 9n chia hết cho 9 => 6n + 333...3 (n chữ số 3) chia hết cho 9 (đpcm)

5 tháng 8 2016

6n+333...33 (n chữ số 3)

Tổng các chữ số của 333..33 là n.3

Tổng các chữ số của 6n là n.6

=>6n+3n=n(3+6)=n.9 chia hết cho 9

Vậy 6n +333...33 chia hết 9

14 tháng 7 2016

\(n^3+6n^2-19n-24=\left(n^3+n^2\right)+\left(5n^2+5n\right)-\left(24n+24\right)\)

\(=n^2\left(n+1\right)+5n\left(n+1\right)-24\left(n+1\right)=\left(n+1\right)\left(n^2+5n-24\right)\)

\(=\left(n+1\right)\left[\left(n^2+2n\right)+\left(3n+6\right)-30\right]=\left(n+1\right)\left[n\left(n+2\right)+3\left(n+2\right)-30\right]\)

\(=\left(n+1\right)\left[\left(n+2\right)\left(n+3\right)-30\right]=\left(n+1\right)\left(n+2\right)\left(n+3\right)-30\left(n+1\right)\)

thấy : \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là 3 số tự nhiên liên tiếp, trong đó có 1 số chia hết cho 3, có ít nhất 1 số chia hết cho 2

mà 2 và 3 nguyên tố cùng nhau (có ước chung là 1)  => (n + 1) (n + 2) (n + 3) chia hết cho 2.3 = 6

và 30 (n + 1) cũng chia hết cho 6

=> đpcm

1 tháng 5 2015

2. A = n3 + 6n2 - 19n - 24

       = n3 + n2 + 5n2 + 5n - 24n - 24

       = (n3 + n2) + (5n+ 5n) - (24n + 24)

       = n2(n + 1) + 5n(n + 1) - 24(n + 1)

       = (n + 1)(n2 + 5n - 24)

       = (n + 1)(n2 + 2n + 3n + 6 - 30)

       = (n + 1)[n(n + 2) + 3(n + 2) - 30]

       = (n + 1)[(n + 2)(n + 3) - 30]

       = (n v+ 1)(n + 2)(n + 3) - (n + 1).30

Vì (n + 1)(n + 2)(n + 3) là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> (n + 1)(n + 2)(n + 3) chia hết cho 2 và 3 

Mà (2,3) = 1

=> (n + 1)(n + 2)(n + 3) chia hết cho 6

Mà (n + 1).30 chia hết cho 6

=> A chia hết cho 6

Nhớ cho mình **** nha