Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = n^2019 - n^2016 + n^2013 - ... + n^3 - 1
A = n^2016( n^3 - 1 ) + ... + (n^3 - 1)
A = (n^2016 + n^2010 + ... + 1)(n^3 - 1) chia hết cho n^3 - 1
Đặt B = n^2016 - n^2013 + ... - n^3
B = n^2013( n^3 - 1 ) + ... + n^3( n^3 - 1 )
B = (n^2013 + n^2007 + ... + n^3)(n^3 - 1) chia hết cho n^3 - 1
Suy ra A + B chia hết cho n^3 - 1
Lại có A + B = n^2019 -1 nên n^2019 -1 chia hết cho n^3 - 1
câu a là thế này : 2 số tự nhiên liên tiếp thì sẽ là 1 số chẵn và 1 số lẽ mà số chẵn chắc chắn chia ht cho 2
và
1 số lẽ nhân với 1 số chẵn sẽ là 1 số chẵn
=> 2 số tự nhiên liên tiếp chia ht cho 2
Chứng minh rằng: Số 11...1(n chữ số 1)-10n chia hết cho 9
Các bạn giúp mình với mình cảm ơn rất nhiều
a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1)
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1
.....
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3)
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1)
= 9.A + n
=>8n + 11111...1= 9A +9n chia hết cho 9
b.11111111....1 (gồm 27 số 1)
= 1111...100.....0 + 11111...10000...0 + 1111...1
-------------------------- ----------------------- -----------
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1
=111111111 x (10^18 + 10^9 +1)
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9)
10^18 chia 3 dư 1
10^9 chia 3 sư 1
=> 10^18 + 10^9 +1 chia hết cho 3
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
a)Gọi 3 số tự nhiên liên tiếp là:a;a+1;a+2
Tổng 3 số tự nhiên liên tiếp là:S=a+a+1+a+2=3a+3
Vì 3 chia hết cho 3 nên 3a chia hết cho 3=>3a chia hết cho 3
hay S chia hết cho 3
Vậy _________________________
Bạn tự kết luận nhé!
Câu b tương tự chỉ là nó không chia hết cho 4 thôi!
a)Ta gọi 3 số tự nhiên liên tiếp là:a,a+1,a+2(a thuộc N)
Ta có:a+(a+1)+(a+2)=3a+3 chia hết cho 3 vì 3a chia hết cho 3,3 chia hết cho a
Suy ra tổng 3 số tự nhiên liên tiếp chia hết cho 3.
b)Tương tự như câu a
6n + 333...3 (n chữ số 3)
= 9n + 333...3 (n chữ số 3) - 3n
= 9n + 3.(111...1 - n)
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà số 111...1 (n chữ số 1) có tổng các chữ số là n
=> 111...1 - n chia hết cho 3
n chữ số 1
=> 3.(111...1 - n) chia hết cho 9
n chữ số 1
Mà 9n chia hết cho 9 => 6n + 333...3 (n chữ số 3) chia hết cho 9 (đpcm)
6n+333...33 (n chữ số 3)
Tổng các chữ số của 333..33 là n.3
Tổng các chữ số của 6n là n.6
=>6n+3n=n(3+6)=n.9 chia hết cho 9
Vậy 6n +333...33 chia hết 9
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3