K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

8 tháng 7 2017
16 tháng 1 2021

a) Xét tam giác ABM và  tam giác ACN:

Góc A chung

AB = AC (do tam giác ABC cân tại A)

AM = AN (gt)

Suy ra: tam giác ABM = tam giác ACN (c g c)

16 tháng 1 2021

b) Xét tam giác AMN có :

AM =AN (gt)

Suy ra:  tam giác AMN cân tại A

Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)

mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\)  ( do tam giác ABC cân tại A)

Suy ra: góc ANM = góc ABC

Mà 2 góc này ở vị trí đồng vị của MN và BC

Suy ra MN song song BC

a: AM+MC=AC

NA+NB=AB

mà AB=AC; AM=AN

nên MC=NB

b: Xét ΔNBC và ΔMCB có

NB=MC

góc NBC=góc MCB

BC chung

=>ΔNBC=ΔMCB

=>góc OBC=góc OCB

=>ΔOBC cân tại O

22 tháng 2 2015

xét TG AMC và TG ANB có

       AC=AB (TG ABC cân tại A) 

       G A chung

       AM=AN (GT)

 S  ra TG AMC=TG ANB (c.g.c)

ra CM=BN (2 cạnh tg ứng)

b) Vì TG AMC=TG ANB (cmt)

     S ra G ACM=G ABN (2 góc tg ứng)

        * G ACM+G MCB = G ACB 

            G ABN+G NBC = G ABC

            mà G ACM=G ABN (cmt)

                  G ACB=G ABC ( TG ABC cân tại A)

                 S raG MCB=G NBC 

                 S ra TG OBC cân tại O

                                    (2 góc ở đấy bằng nhau)

25 tháng 11 2017

xét TG AMC và TG ANB có

       AC=AB (TG ABC cân tại A) 

       G A chung

       AM=AN (GT)

 S  ra TG AMC=TG ANB (c.g.c)

S ra CM=BN (2 cạnh tg ứng)

b) Vì TG AMC=TG ANB (cmt)

     S ra G ACM=G ABN (2 góc tg ứng)

        * G ACM+G MCB = G ACB 

            G ABN+G NBC = G ABC

            mà G ACM=G ABN (cmt)

                  G ACB=G ABC ( TG ABC cân tại A)

                 S raG MCB=G NBC 

                 S ra TG OBC cân tại O

                                    (2 góc ở đấy bằng nhau)

30 tháng 1 2022

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).

Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)

Xét \(\Delta ABM\) và \(\Delta ACN:\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)

\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)

b) Xét \(\Delta ABH\) và \(\Delta ACK:\)

\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)

\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

\(\Rightarrow\) AH = AK (2 cạnh tương ứng).

c) Xét \(\Delta AOH\) và \(\Delta AOK:\)

\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).

\(\Rightarrow\) OH = OK (2 cạnh tương ứng).

Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)

\(\Rightarrow\) OB = OC.

\(\Rightarrow\Delta OBC\) cân tại O.

a: Xét ΔABN và ΔACM có 

AB=AC

\(\widehat{A}\) chung

AN=AM

Do đó: ΔABN=ΔACM