Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
a. Hàm xác định trên R
\(f\left(-x\right)=2\left(-x\right)^3-4\left(-x\right)=-2x^3+4x=-\left(2x^3-4x\right)=-f\left(x\right)\)
Hàm lẻ
b.
Hàm xác định trên R
\(f\left(-x\right)=\left|-x\right|+2\left(-x\right)=\left|x\right|-2x\) (khác \(f\left(x\right)\) và \(-f\left(x\right)\))
Hàm không chẵn không lẻ
TXĐ: D=[-4;4]
\(f\left(-x\right)=\sqrt{4-\left(-x\right)}+\sqrt{-x+4}\)
\(=\sqrt{4-x}+\sqrt{4+x}\)
=f(x)
=>f(x) là hàm số chẵn
a, Ta có : \(f\left(x\right)=\left[{}\begin{matrix}x.x=x^2\\x\left(-x\right)=-x^2\end{matrix}\right.\)
=> Hàm f(x) là hàm chẵn .
b, Ta có : \(f\left(x\right)-f\left(-x\right)=\dfrac{\sqrt{1-x^2}}{x^3+x}+\dfrac{\sqrt{1-x^2}}{x^3+x}\ne0\)
\(\Rightarrow f\left(x\right)\ne f\left(-x\right)\)
=> Hàm f(x) là hàm lẻ .
Ủa gì ngộ vậy,ai làm kiểu này bao giờ?
a)\(D=R\)\(\Rightarrow\forall x\in D\) thì \(-x\in D\)
Có \(f\left(-x\right)=-x\left|-x\right|=-x\left|x\right|=-f\left(x\right)\)
\(\Rightarrow f\left(x\right)\) là hàm lẻ
b)\(D=R\backslash\left\{0\right\}\)\(\Rightarrow\forall x\in D\) thì \(-x\in D\)
Có \(f\left(-x\right)=\dfrac{\sqrt{1-\left(-x\right)^2}}{\left(-x\right)^3+\left(-x\right)}=-\dfrac{\sqrt{1-x^2}}{x^3+x}=-f\left(x\right)\)
\(\Rightarrow f\left(x\right)\) là hàm lẻ
Hàm xác định trên R
\(f\left(-x\right)=\dfrac{\left|-x+1\right|-\left|-x-1\right|}{\left|-x+2\right|+\left|-x-2\right|}=\dfrac{\left|x-1\right|-\left|x+1\right|}{\left|x+2\right|+\left|x-2\right|}=-f\left(x\right)\)
Hàm đã cho là hàm lẻ
a. \(D=R\)
\(g\left(-x\right)=\sqrt{\left(-x\right)^4-2\left(-x\right)+3}-\sqrt{\left(-x\right)^4+2\left(-x\right)+3}\)
\(=\sqrt{x^4+2x+3}-\sqrt{x^4-2x+3}=-\left(\sqrt{x^4-2x+3}-\sqrt{x^4+2x+3}\right)\)
\(=-g\left(x\right)\)
Hàm lẻ
b.
\(D=R\)
\(h\left(-x\right)=\sqrt[3]{-x+1}-\sqrt[3]{-x-1}=-\sqrt[3]{x-1}+\sqrt[3]{x+1}\)
\(=\sqrt[3]{x+1}-\sqrt[3]{x-1}=h\left(x\right)\)
Hàm chẵn
a.
\(D=R\)
\(f\left(-x\right)=\left|-2x-3\right|+\left|-2x+3\right|=\left|2x+3\right|+\left|2x-3\right|=f\left(x\right)\)
Hàm chẵn
b.
\(D=R\)
\(f\left(-x\right)=\dfrac{\left(-x\right)^3+\left(-x\right)}{\left(-x\right)^4+1}=\dfrac{-x^3-x}{x^4+1}=-\dfrac{x^3+x}{x^4+1}=-f\left(x\right)\)
Hàm lẻ