Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f.
\(x+1>0\) và \(7-2x>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)
g.
\(x+1>0\) và \(x^2-4\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)
\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)
h: ĐKXĐ: |x+1|-|x-2|<>0
=>|x+1|<>|x-2|
=>x-2<>x+1 và x+1<>-x+2
=>2x<>1
=>x<>1/2
g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0
=>x>-2 và x>-1 và x<>2; x<>-2
=>x>-1; x<>2
f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x
=>3x<>6 và -1<=x<=7/2
=>x<>2 và -1<=x<=7/2
Lời giải:
a. ĐKXĐ: $x^3-x\neq 0$
$\Leftrightarrow x(x-1)(x+1)\neq 0$
$\Leftrightarrow x\neq 0;\pm 1$
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)
b.
ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)
TXĐ:
\([0;+\infty)\setminus \left\{1\right\}\)
c.
ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)
TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)