Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
( Gọi x (km/h) là vận tốc người thứ hai. y (km) là chiều dài quãng đường đua.
Điều kiện: x 3, y > 0
Ta có: x + 15 (km/h) là vận tốc môtô thứ nhất. x – 3 (km/h) là vận tốc mô tô người thứ ba
Đổi 12 phút = 1/5 giờ 3 phút = 1/20 giờ
Theo đề bài ta có hệ phương trình trên và Phương pháp giải hệ phương trình trên.
Kết quả: x = 75, y = 90
Vậy vận tốc mô tô thứ nhất là: 90 km/h; vận tốc mô tô thứ hai là 75 km/h; vận tốc mô tô thứ ba là 72 km/h
Gọi số đó là abcd.
ta có : b=a+1
c=a+2
d=a+3
Ta có: abcd=ax1000+bx100+cx10+d
=ax1000+(a+1)x100+(a+2)x10+(a+3)
=ax1000+100+ax100+ax10+20+a+3
=ax(1000+100+10+1)+100+20+3
=ax1111+100+20+3
= aaaa+123
Khi đổi chỗ lại ta có:
dcba=dx1000+cx100+bx10+a
=(a+3)x1000+(a+2)x100+(a+1)x10+a
=ax1000+3000+ax100+200+ax10+10+a
= ax(1000+100+10+1)+3000+200+10
= ax1111+3210
=aaaa+3210
Lấy aaaa+3210-aaaa+123=3210-123=3087.