K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

Xét 3 TH

*TH1: \(y+2< 0,2x+3< 0\)

\(\Leftrightarrow-2x-3-y-2=8\Leftrightarrow2x+y=3\)(luôn đúng)

vậy có nghiệm với mọi x,y thỏa mãn$y+2<0,2x+3<0$

*TH2:\(y+2\ge0,2x+3< 0\)

\(\Leftrightarrow-2x-3+y+2=8\Leftrightarrow y-2x=9\)

thay 2x=3-y ,ta có

y-3+y=9 nên 2y=12 nên y=6(t/m)

suy ra x=-3/2(loại)

loại

*TH3: \(y+2\ge0,2x+3\ge0\)

\(2x+3+y+2=8\Rightarrow2x+y=3\)(luôn đúng)

vậy pt có nghiệm với mọi $y+2\ge 0,2x+3\ge 0$ thỏa mãn 2x+y=8

Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.

27 tháng 1 2022

Mình thấy chưa chính xác cho lắm bạn ạ!!!

`@` `\text {Ans}`

`\downarrow`

Ta có:

`x/2 = y/3 = z/4`

`=>`\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x-3y+z}{4-9+4}=-\dfrac{3}{-1}=3\)

`=>`\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=3\)

`=>`\(x=2\cdot3=6,\) `y = 3*3 = 9, z = 4*3=12`

6 tháng 7 2023

mình cần gấp ạ :)))

 

16 tháng 8 2020

Bài làm:

a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)

+ Nếu x = 6

\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)

+ Nếu x = 4

\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)

16 tháng 8 2020

b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)

\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)

\(\Leftrightarrow x=\frac{4}{3}\)

Thay vào ta được:

\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)

\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)

\(\Leftrightarrow14y=-4\)

\(\Rightarrow y=-\frac{2}{7}\)

Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)

1 tháng 10 2017

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{2x}{10.2}=\frac{3y}{15.3}=\frac{z}{21}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{21}=\frac{2x+3y+z}{20+45+21}=\frac{172}{86}=2\)

\(\frac{x}{10}=2\Rightarrow x=2.10=20\)

\(\frac{y}{15}=2\Rightarrow y=2.15=30\)

\(\frac{z}{21}=2\Rightarrow z=2.21=42\)

Vậy x=20 ; y=30 và z=42

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

12 tháng 9 2016

--33 là 33 à

12 tháng 9 2016

x - y + z = - 33 à bạn

11 tháng 5 2022

a)\(-\dfrac{2}{3}x^6y^3\)ư

hệ số -2/3 

biến \(x^6y^3\)

b) \(\dfrac{5}{8}x^4y^2\)

hệ số 5/8

biến\(x^4y^2\)

c)\(2x^7y^3\)

hệ số : 2

 biến \(x^7y^3\)