Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{4}{9}\Rightarrow x=\frac{4y}{9}\) thay vào \(3x-2y=12\)
\(\Rightarrow3.\frac{4y}{9}-2y=12\Rightarrow y=-2\) thay vào \(x=\frac{4y}{9}=\frac{4.\left(-2\right)}{9}=-\frac{8}{9}\)
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
Xét 3 TH
*TH1: \(y+2< 0,2x+3< 0\)
\(\Leftrightarrow-2x-3-y-2=8\Leftrightarrow2x+y=3\)(luôn đúng)
vậy có nghiệm với mọi x,y thỏa mãn$y+2<0,2x+3<0$
*TH2:\(y+2\ge0,2x+3< 0\)
\(\Leftrightarrow-2x-3+y+2=8\Leftrightarrow y-2x=9\)
thay 2x=3-y ,ta có
y-3+y=9 nên 2y=12 nên y=6(t/m)
suy ra x=-3/2(loại)
loại
*TH3: \(y+2\ge0,2x+3\ge0\)
\(2x+3+y+2=8\Rightarrow2x+y=3\)(luôn đúng)
vậy pt có nghiệm với mọi $y+2\ge 0,2x+3\ge 0$ thỏa mãn 2x+y=8
Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.
Mình thấy chưa chính xác cho lắm bạn ạ!!!