Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) => \(\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{5}\right)^2\)
=> \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{2x^2+y^2-z^2}{2.9+16-25}=\dfrac{9}{18+16-25}=\dfrac{9}{9}=1\)
=> \(\left\{{}\begin{matrix}\dfrac{x^2}{9}=1\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3\\\dfrac{y^2}{16}=1\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\\\dfrac{z^2}{25}=1\Rightarrow\dfrac{z}{5}=1\Rightarrow z=5\end{matrix}\right.\)
Vậy x = 3, y = 4, z = 5
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
Ta có: \(2x^2+y^2-z^2=9\)
\(\Leftrightarrow18k^2+16k^2-25k^2=9\)
\(\Leftrightarrow9k^2=9\)
\(\Leftrightarrow k^2=1\)
TH1: k=1
=>x=3; y=4; z=5
TH2: k=-1
=>x=-3; y=-4; z=-5
\(\dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow\dfrac{2}{5}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)
\(\Rightarrow\dfrac{2}{5}x.\dfrac{1}{12}=\dfrac{3}{4}y.\dfrac{1}{12}=\dfrac{4}{5}z.\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}\)
Đặt \(\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=30k\\y=16k\\z=15k\end{matrix}\right.\). Ta có:
\(x+y+z=49\)
\(\Rightarrow30k+16k+15k=49\)
\(\Rightarrow61k=49\)
\(\Rightarrow k=\dfrac{49}{61}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{49}{61}.30=\dfrac{1470}{61}\\y=\dfrac{49}{61}.16=\dfrac{784}{61}\\z=\dfrac{49}{61}.15=\dfrac{735}{61}\end{matrix}\right.\)
\(\dfrac{2x}{5}=\dfrac{3y}{2}=\dfrac{5z}{7}\)
\(\Leftrightarrow28x=105y=50z\)
hay x/75=y/20=z/42
Đặt x/75=y/20=z/42=k
=>x=75k; y=20k; z=42k
Ta có: xyz=504000
\(\Leftrightarrow k^3\cdot63000=504000\)
\(\Leftrightarrow k=2\)
=>x=150; y=40; z=84
\(+)3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
\(+)7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{2}=\dfrac{5y}{15};\dfrac{3y}{15}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y-z}{10+15-21}=\dfrac{32}{16}=2\)
Suy ra: \(\dfrac{x}{10}=2\Rightarrow x=20\)
\(\dfrac{y}{15}=2\Rightarrow y=30\)
\(\dfrac{z}{21}=3\Rightarrow z=63\)
Vậy \(x=20;y=30;z=63\)
PT(1) nhân 3 pt(2) nhân 2
<=>\(\hept{\begin{cases}-6x+9y=6\\6x+10y=24\end{cases}}\)
công lại
=> 19y=30=> y=30/19 (lẻ nhỉ)
thế vào (1)=> -2x+90/19=2
x=90/19-2)/2=(45-19)=26/19
theo bài ra ta có
(-2x + 3y) +(3x + 5y = 2 + 12
=> - 2x + 3y + 3x + 5y = 14
=> x + 8y = 14
=> 2(x+8y)= 2 x 14
=> 2x + 16y = 28 (1)
ta lại có
2x + 16y + (-2x) + 3y = 28 + 2
=> 19y = 30
=> y= ....
đến đây cậu tự tìm x nhé
5x/2=7z/3
nên 15x=14z
=>x/14=z/15
3x=5y nên x/5=y/3
=>x/70=y/42=z/45
Đặt x/70=y/42=z/45=k
=>x=70k; y=42k; z=45k
Tacó: xz=47250
=>3150k2=47250
=>k2=15
TH1: \(k=\sqrt{15}\)
\(x=70\sqrt{15};y=42\sqrt{15};z=45\sqrt{15}\)
TH2:
\(k=-\sqrt{15}\)
\(x=-70\sqrt{15};y=-42\sqrt{15};z=-45\sqrt{15}\)