Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x/2=7z/3
nên 15x=14z
=>x/14=z/15
3x=5y nên x/5=y/3
=>x/70=y/42=z/45
Đặt x/70=y/42=z/45=k
=>x=70k; y=42k; z=45k
Tacó: xz=47250
=>3150k2=47250
=>k2=15
TH1: \(k=\sqrt{15}\)
\(x=70\sqrt{15};y=42\sqrt{15};z=45\sqrt{15}\)
TH2:
\(k=-\sqrt{15}\)
\(x=-70\sqrt{15};y=-42\sqrt{15};z=-45\sqrt{15}\)
Đặt \(x=\frac{y}{2}=\frac{z}{3}=k\left(k\in Q\right)\)\(\Rightarrow x=k;y=2k;z=3k\)
Thế (1) vào biểu thức trên
\(\Rightarrow2\left(x^2+y^2\right)-z^2=9\)
\(\Leftrightarrow2\left[\left(k\right)^2+\left(2k\right)^2\right]-\left(3k\right)^2=9\)
\(\Rightarrow2\left(k^2+4k^2\right)-9k^2=9\)
\(\Rightarrow2k^2+8k^2-9k^2=9\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\hept{\begin{cases}3\\-3\end{cases}}\)
Với k = 3
\(\Rightarrow x=3;y=3.2=6;z=3.3=9\)
Với k = -3
\(\Rightarrow x=-3;y=-3.2=-6;z=-3.3=-9\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\) => \(\left(\dfrac{x}{3}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{5}\right)^2\)
=> \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{2x^2+y^2-z^2}{2.9+16-25}=\dfrac{9}{18+16-25}=\dfrac{9}{9}=1\)
=> \(\left\{{}\begin{matrix}\dfrac{x^2}{9}=1\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3\\\dfrac{y^2}{16}=1\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\\\dfrac{z^2}{25}=1\Rightarrow\dfrac{z}{5}=1\Rightarrow z=5\end{matrix}\right.\)
Vậy x = 3, y = 4, z = 5
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
Ta có: \(2x^2+y^2-z^2=9\)
\(\Leftrightarrow18k^2+16k^2-25k^2=9\)
\(\Leftrightarrow9k^2=9\)
\(\Leftrightarrow k^2=1\)
TH1: k=1
=>x=3; y=4; z=5
TH2: k=-1
=>x=-3; y=-4; z=-5
\(\dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow\dfrac{2}{5}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)
\(\Rightarrow\dfrac{2}{5}x.\dfrac{1}{12}=\dfrac{3}{4}y.\dfrac{1}{12}=\dfrac{4}{5}z.\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}\)
Đặt \(\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=30k\\y=16k\\z=15k\end{matrix}\right.\). Ta có:
\(x+y+z=49\)
\(\Rightarrow30k+16k+15k=49\)
\(\Rightarrow61k=49\)
\(\Rightarrow k=\dfrac{49}{61}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{49}{61}.30=\dfrac{1470}{61}\\y=\dfrac{49}{61}.16=\dfrac{784}{61}\\z=\dfrac{49}{61}.15=\dfrac{735}{61}\end{matrix}\right.\)
\(+)3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)
\(+)7y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{7}\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{x}{2}=\dfrac{5y}{15};\dfrac{3y}{15}=\dfrac{z}{7}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y-z}{10+15-21}=\dfrac{32}{16}=2\)
Suy ra: \(\dfrac{x}{10}=2\Rightarrow x=20\)
\(\dfrac{y}{15}=2\Rightarrow y=30\)
\(\dfrac{z}{21}=3\Rightarrow z=63\)
Vậy \(x=20;y=30;z=63\)
Bạn tham khảo:
Giả sử:\(\hept{\begin{cases}xyz-x=1945\left(1\right)\\xyz-y=1975\left(2\right)\\xyz-z=1995\left(3\right)\end{cases}}\)với \(x,y,z\in N\)
Tứ \(\left(1\right)\Rightarrow x\left(yz-1\right)=1945\)là số lẻ \(\Rightarrow x\)lẻ
Từ \(\left(2\right)\Rightarrow y\left(xz-1\right)=1975\)là số lẻ \(\Rightarrow y\)lẻ
Từ \(\left(3\right)\Rightarrow z\left(xy-1\right)=1995\)là số lẻ \(\Rightarrow z\)lẻ
Nên \(x,y,z\)là số lẻ
\(\Rightarrow x,y,z-x\)là số chẵn khác 1945
Vậy không tồn tại \(x,y,z\in N\)thỏa mãn \(\left(1\right),\left(2\right),\left(3\right)\).
xy - xz + yz - z mũ 2 = -1
x(y-z) + z(y-z) = -1
(y-z)(x+z) = -1
=> (y-z) ; (x+z) thuộc Ư(-1)
=> 2 trường hợp
trường hợp 1: x+z =1 => x= 1 - z hay x= +(1-z)
và y-z= -1 => y = -1 + z hay y= -(1-z)
trường hợp 2: x+z=-1=> x= - (1+z)
và y-z = 1 => y= +(1+z)
từ 2 trường hợp đó ta có x và y đối nha
lộn ko fai toán 6 đâu