Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,+) Thay x = 5 vào biểu thức A, ta có:
A = 4.52 - 5.|5| + 2.|3 - 5|
A = 4.25 - 5.5 + 2.2
A = 100 - 25 + 4
A = 75 + 4 = 79
Thay x = 3 vào biểu thức A, ta có:
A = 4.32 - 5.|3| + 2.|3 - 3|
A = 4.9 - 5.3 + 2.0
A = 36 - 15 = 21
+) Ta có: B = xy + x2y2 + x3y3 + ... + x100y100
B = xy + (xy)2 + (xy)3 + ... + (xy)100
Thay x = 1; y= -1 vào biểu thức B, ta có:
B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ... + [1.(-1)]100
B = -1 + 1 - 1 + ... + 1
B = 0
+) Thay x = 1 vào C, ta có:
C = 100.1100 + 99.199 + 98.198 + ... + 2.12 + 1
C = 100 + 99 + 98 + ... + 2 + 1
C = (100 + 1).[(100 - 1) : 1 + 1] : 2
C = 101.100 : 2
C = 5050
+) Thay x = 99 vào biểu thức D, ta có:
D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1
D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99 + 1).9996 + ... + (99 + 1).99 - 1
D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1
D = 99 - 1 = 98
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
Câu 2:
Sửa đề; \(Q\left(x\right)=x^{99}-100x^{98}+100x^{97}-100x^{96}\)
x=99 nên x+1=100
\(Q\left(x\right)=x^{99}-x^{98}\left(x+1\right)+x^{97}\left(x+1\right)-x^{96}\left(x+1\right)\)
\(=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}\)
\(=-x^{96}=-99^{96}\)
a, \(|x-1|+|2x-y+3|=0\)
Ta có : \(|x-1|\ge0;|2x-y+3|\ge0< =>|x-1|+|2x-y+3|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}< =>\hept{\begin{cases}x=1\\y=5\end{cases}}}\)
b, \(|x-y|+|x+y-2|=0\)
Ta có : \(|x-y|\ge0;|x+y-2|\ge0< =>|x-y|+|x+y-2|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}< =>\hept{\begin{cases}x=1\\y=1\end{cases}< =>x=y=1}}\)
c, \(|x+y-1|+|2x-3y|=0\)
Ta có : \(|x+y-1|\ge0;|2x-3y|\ge0< =>|x+y-1|+|2x-3y|\ge0\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}< =>\hept{\begin{cases}x+y=1\\\frac{x}{3}=\frac{y}{2}\end{cases}}\)
Theo tính chất của dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{1}{5}< =>\hept{\begin{cases}\frac{x}{3}=\frac{1}{5}\\\frac{y}{2}=\frac{1}{5}\end{cases}}\)
\(< =>\hept{\begin{cases}5.x=1.3\\y.5=1.2\end{cases}< =>\hept{\begin{cases}5x=3\\5y=2\end{cases}< =>\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}}}\)
a) Ta có :\(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|2x-y+3\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x-1\right|+\left|2x-y+3\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x-y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\2x-y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)
b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|x+y-2\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x-y\right|+\left|x+y-2\right|\ge0\forall x;y}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\x+y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x+y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
c) Ta có \(\hept{\begin{cases}\left|x+y-1\right|\ge0\forall x;y\\\left|2x-3y\right|\ge0\forall x;y\end{cases}}\Rightarrow\left|x+y-1\right|+\left|2x-3y\right|\ge0\forall x;y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\2x=3y\end{cases}}\Rightarrow\hept{\begin{cases}x+y=1\\x=\frac{3}{2}y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{2}{5}\end{cases}}\)
MỌI NGƯỜI ƠI ! CÓ AI CÒN RẢNH RANG GIÚP BÀI TỚ VỚI NHÉ ! HUHU MAI TỚ PHẢI NỘP BÀI RỒI