Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\\dfrac{8}{5}+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{4}{5}\end{matrix}\right.\)
\(b,\dfrac{x-\dfrac{4}{7}}{x+\dfrac{1}{2}}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
\(c,\dfrac{2x-3}{x+\dfrac{7}{4}}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3< 0\\x+\dfrac{7}{4}>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3>0\\x+\dfrac{7}{4}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x >-\dfrac{7}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{7}{4}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-\dfrac{7}{4}< x< \dfrac{3}{2}\\x\in\varnothing\end{matrix}\right.\Leftrightarrow-\dfrac{7}{4}< x< \dfrac{3}{2}\)
a, \(\left|2x+5\right|+3=0\Rightarrow\left|2x+5\right|=0-3\Rightarrow\left|2x+5\right|=-3\)
Vì |x|\(\ge0\)\(\forall\)x mà |2x+5|=-3 nên không có giá trị x thỏa mãn
b, \(\left|x\right|-a=0\Rightarrow\left|x\right|=0+a\Rightarrow\left|x\right|=a\Rightarrow x=a;x=-a\)
Bây giờ mk chỉ làm đc 2 phép tính đầu còn phép tính sau lúc nào rảnh mk sẽ giúp nhé
cko mk 2 phép tính đầu nhá
a) Ta có: \(\left(2x-8\right)\left(2x+10\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8\ge0\\2x+10\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-5\end{matrix}\right.\)
b) Ta có: \(\left(\left|x\right|+5\right)\left(x-3\right)< 0\)
nên x-3<0
hay x<3
a) \(2x+\frac{3}{15}=\frac{7}{5}\)
=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)
=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)
b) \(x-\frac{2}{9}=\frac{8}{3}\)
=> \(x=\frac{8}{3}+\frac{2}{9}\)
=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)
c) \(\frac{-8}{x}=\frac{-x}{18}\)
=> x(-x) = (-8).18
=> -x2 = -144
=> x2 = 144(bỏ dấu âm)
=> x = \(\pm\)12
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)
=> 5(2x + 3) = 6(x - 2)
=> 10x + 15 = 6x - 12
=> 10x + 15 - 6x + 12 = 0
=> 4x + 27 = 0
=> 4x = -27
=> x = -27/4
e) \(\frac{x+1}{22}=\frac{6}{x}\)
=> x(x + 1) = 132
=> x(x + 1) = 11.12
=> x = 11
f) \(\frac{2x-1}{2}=\frac{5}{x}\)
=> x(2x - 1) = 10
=> 2x2 - x = 10
=> 2x2 - x - 10 = 0
tới đây tự làm đi nhé
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63
=> 4x2 - 1 = 63
=> 4x2 = 64
=> x2 = 16
=> x = \(\pm\)4
h) Tương tự
a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)
b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)
c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)
e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0