K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0

11 tháng 10 2021

Làm vs mn cần gấp

 

11 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\\dfrac{8}{5}+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{4}{5}\end{matrix}\right.\)

\(b,\dfrac{x-\dfrac{4}{7}}{x+\dfrac{1}{2}}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\)

\(c,\dfrac{2x-3}{x+\dfrac{7}{4}}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3< 0\\x+\dfrac{7}{4}>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3>0\\x+\dfrac{7}{4}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x >-\dfrac{7}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{7}{4}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-\dfrac{7}{4}< x< \dfrac{3}{2}\\x\in\varnothing\end{matrix}\right.\Leftrightarrow-\dfrac{7}{4}< x< \dfrac{3}{2}\)

27 tháng 6 2017

a, \(\left|2x+5\right|+3=0\Rightarrow\left|2x+5\right|=0-3\Rightarrow\left|2x+5\right|=-3\)

Vì |x|\(\ge0\)\(\forall\)x mà |2x+5|=-3 nên không có giá trị x thỏa mãn

b, \(\left|x\right|-a=0\Rightarrow\left|x\right|=0+a\Rightarrow\left|x\right|=a\Rightarrow x=a;x=-a\)

Bây giờ mk chỉ làm đc 2 phép tính đầu còn phép tính sau lúc nào rảnh mk sẽ giúp nhé

cko mk 2 phép tính đầu nhá

a) Ta có: \(\left(2x-8\right)\left(2x+10\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-8\ge0\\2x+10\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-5\end{matrix}\right.\)

b) Ta có: \(\left(\left|x\right|+5\right)\left(x-3\right)< 0\)

nên x-3<0

hay x<3

25 tháng 8 2020

a) \(2x+\frac{3}{15}=\frac{7}{5}\) 

=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)

=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)

b) \(x-\frac{2}{9}=\frac{8}{3}\)

=> \(x=\frac{8}{3}+\frac{2}{9}\)

=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)

c) \(\frac{-8}{x}=\frac{-x}{18}\)

=> x(-x) = (-8).18

=> -x2 = -144

=> x2 = 144(bỏ dấu âm)

=> x = \(\pm\)12

d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)

=> 5(2x + 3) = 6(x - 2)

=> 10x + 15 = 6x - 12

=> 10x + 15 - 6x + 12 = 0

=> 4x + 27 = 0

=> 4x = -27

=> x = -27/4

e) \(\frac{x+1}{22}=\frac{6}{x}\)

=> x(x + 1) = 132

=> x(x + 1) = 11.12

=> x = 11

f) \(\frac{2x-1}{2}=\frac{5}{x}\)

=> x(2x - 1) = 10

=> 2x2 - x = 10

=> 2x2 - x - 10 = 0

tới đây tự làm đi nhé

g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)

=> (2x - 1)(2x + 1) = 63

=> 4x2 - 1 = 63

=> 4x2 = 64

=> x2 = 16

=> x = \(\pm\)4

h) Tương tự

25 tháng 8 2020

a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)

b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)

c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)

e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)

f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)

g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)